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Abstract 

A Verification and Validation (V&V) framework is presented for the development and execution 
of coordinated modeling and experimental programs to assess the predictive capability of 
computational models of complex systems through focused, well structured, and formal 
processes. The elements of the framework are based on established V&V methodology 
developed by various organizations including the Department of Energy, National Aeronautics 
and Space Administration, the American Institute of Aeronautics and Astronautics, and the 
American Society of Mechanical Engineers. Four main topics are addressed: 1) Program 
planning based on expert elicitation of the modeling physics requirements, 2) experimental 
design for model assessment, 3) uncertainty quantification for experimental observations and 
computational model simulations, and 4) assessment of the model predictive capability.  The 
audience for this document includes program planners, modelers, experimentalist, V&V 
specialist, and customers of the modeling results. 
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EXECUTIVE SUMMARY 
 
 
Due to the rapid development of computational physics based engineering models and the 
increased reliance on these models for decision support, model development and assessment 
processes have undergone increased scrutiny. This scrutiny has lead to the establishment of 
formal Verification and Validation (V&V) processes, such as those developed by NASA, DoE 
and various AIAA and ASME codes and standard organizations (AIAA, 1998, ASME, 1998, 
2006a, 2006b, 2009, Oberkampf et al., 2007, Pilch et al, 2001, Trucano et al., 2002). 
 
The development of computational engineering models has also changed the relationship 
between modeling and experimental work for engineered system design and evaluation. The use 
of modeling to support design has reduced the number of design, build, and test cycles required 
to ensure that complex systems to meet programmatic goals. As a result of increased dependence 
on modeling, there has been an increased emphasis on experimental testing for the direct support 
of model development and model assessment.  
 
The primary focus of this document is to provide guidance on the development and execution of 
tightly integrated modeling/experimental programs based on well-established V&V practices for 
the purpose of model assessment. The framework emphasizes a highly collaborative subject 
matter expert driven planning processes as well as data driven validation procedures. 
 
The intended audience of this document includes program planners, modelers, experimentalist, 
V&V specialist, and customers of model predictions. To facilitate this broad audience, this 
document is organized into multiple parts.  
 
The introduction provides background on the V&V processes including definitions, and 
summarizes the purpose and scope of this document.  
 
Part 1 focuses on program planning based on the physics simulation requirements needed to meet 
the customer’s needs. All readers who participate in program planning, modeling, experimental 
work, and model assessment will find the content of Part 1 useful.  
 
Part 2 focuses on the collaborative approach to experimental design that requires significant 
contribution from modelers as well as experimentalist. Modelers, experimentalist, and those that 
assess the models (i.e. V&V specialist) should read Part 2.  
 
Part 3 addresses the estimation of uncertainty in both the experimental data and in the model 
predictions. This part contains more technical content than the previous parts, and is focused on 
providing guidance to modelers, experimentalist, and V&V specialist in planning experimental 
and modeling uncertainty quantification efforts. 
 
Part 4 addresses model assessment, both from a validation (i.e. direct comparison to 
experimental data) and subjective (structured expert elicitation) point of view. Part 4 contains 
significant technical content and is of direct interest to those that assess the predictive capability 
of the model, such as V&V specialist. Program planners and customers may find the technical 
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content less interesting, but will find that the product of the model assessment – the evaluation of 
model bias and uncertainty in this bias to be of high interest. 
 
Following Part 4 is the concluding chapter and references. 
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1.0 INTRODUCTION AND BACKGROUND 

 
 
1.1 What is a validation directed program? 
 
A model validation directed program focuses on the development and execution of combined 
computational modeling/experimental tasks specifically designed to assess predictive capability 
of computational or analytical models for specific applications in a focused, well-structured, and 
formal manner. The applications that are typically targets of these formalized approaches are 
those that involve multiple physics on multiple scales, for which the predictive capability of the 
computations models can have significant economic, environment, or safety impact.  
 
1.2 Role of computational modeling in the decision process 
 
The relative importance of computational modeling and experimental work on the design or 
qualification of a system design varies from application to application. In some cases, 
computational models provide critical information during the design of a system whereas 
qualification is based on test data of a prototype of the final design. In other cases, modeling and 
testing serve complementary roles where the testing is performed under limited conditions due to 
economic and other constraints, and modeling is utilized to extend the assessment to other 
untested conditions. For other cases, modeling serves as the primary source of evidence that a 
system design meets requirements. Often, the system is a one of a kind, and the scale of the 
system is such that prototypes at the full scale will not be built. As the impact of modeling on the 
decision process increases, the importance of evaluating model capability using experimental 
data increases.  
 
As computational models mature, computational resources increase in capability (i.e. High 
Performance Computation), and full-scale prototype development becomes less practical due to 
the complexity of the desired engineered systems, the role of experimental work shifts from 
providing data for system testing to providing data for model validation. As a result, the 
formalization of the process to maximize effectiveness of experimental work to support model 
validation becomes a primary driver in program planning and execution.  
 
1.3 What is validation? 
 
ASME V&V10-2006 (ASME, 2006) defines model validation to be “the process of determining 
the degree to which a model is an accurate representation of the real world, from the perspective 
of the intended uses of the model.” This statement can be broken down into several concepts: 
 
• Validation is a measure of accuracy in representing the real world as approximated by 

measurements from validation experiments. As stated in ASME V&V 20-2009 (ASME, 
2009), “There can be no validation without experimental data with which to compare the 
results of the simulation.”  
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Validation is a necessary component in the process of providing evidence of model 
suitability. Validation is not a binary statement about whether a model is valid or invalid, but 
rather a critical component in the overall assessment of the suitability of the computational 
model for the intended application. Other evidence of model suitability includes the 
Phenomena Identification and Ranking Table (PIRT) (Oberkampf and Roy, 2010) and the 
Predictive Capability Maturity Model  (PCMM) (Oberkampf, et. al, 2007) discussed in later 
chapters. 
 

• Validation focuses on an intended application, which limits the conditions for which the 
model is to be evaluated. Because computational models are usually intended to be 
predictive, validation may assess model accuracy for conditions that are different than those 
for the application.  
 

• When validation experiments cannot be performed at the conditions of the intended 
application, validation should be performed over a hierarchy of experiments designed to test 
the various features of the computational model that are important to the application. While 
not providing direct evidence of model validity at the application conditions, the tests over 
the validation hierarchy provides evidence that the capabilities of the computational models 
have been assessed.   

 
1.4 Purpose of this document 
 
The purpose of this document is to provide guidance on the processes of validation driven 
program planning and execution that are based on methodology developed over the years by 
various organizations such as NASA, DoE and various AIAA and ASME codes and standard 
organizations (AIAA, 1998, ASME, 1998, 2006a, 2006b, 2009, Oberkampf et al., 2007, Pilch et 
al, 2001, Trucano et al., 2002) to help ensure that the model assessment process is complete and 
rigorous. Because the development of a validation process for a particular application relies 
heavily on Subject Matter Expertise (SME) to design a validation program that is reasonable 
given the resources (time, personnel, computational and experimental resources, and funding), 
the present document will emphasize the SME driven planning processes as well as data driven 
validation procedures.  
 
The development and execution of this process requires well integrated team planning among 
those responsible for programmatic needs, computational model developers, model users, and 
experimentalists, and should consider the needs of the eventual customers of the modeling 
capability and results. The communication and tight coordination between these team members 
is one of the more significant benefits of this process, greatly increasing the chances of a 
successful model validation dataset and campaign. 
 
The methodology presented in this document addresses the approach used to engage 
scientific/engineering subject matter experts to characterize and prioritize the issues associated 
with model prediction for the intended application. The development of a business plan to 
accomplish the results of the scientific planning is beyond the scope of this document and not 
addressed. However, the customers (internal such as program directors or external such as 
commercial users of the resulting software) of the modeling efforts are included into the planning 
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process as the customer defines the requirements for the models and the anticipated scenarios to 
which the models will be applied, as well as understands resource limitations of the program.  
 
1.5 The Process for Validation Directed Programs 
 
The validation directed program and experimental planning processes are summarized in Figure 
1.1. This figure is based on that presented by Trucano et al. (2002). The content in the upper blue 
box represents the integrated program planning that defines, justifies, and prioritizes the 
hierarchy of validation experiments. The lower blue box represents the design, execution, and 
computational modeling of specific validation experiments that have been identified for the 
validation hierarchy.  
 
At the completion of the validation program planning (upper box), one should have a definition 
of the quantities of interest that are to be predicted at the system level (e.g., some measure of 
performance, model based environmental specifications or impact, or the probability that the a 
system remains safe), an assessment of the physics that must be adequately modeled to predict 
these quantities, a high level identification of the types of experiments required to address 
questions of predictive capability of the computational models, the preferred scale of these 
experiments (both physical scale and complexity), a prioritization of these experiments, and the 
associated planning document. One should think of this planning as a living process, with on-
going changes expected due to knowledge gained from the execution of the validation 
experiments, additional model development efforts, and due to program resource reallocation.  
 
Implementation of the steps indicated in Figure 1.1 should occur in the order shown. This figure 
is based on ongoing computational/experimental programs that were originally designed for 
scientific discovery rather than for model validation and have generally evolved through a less 
formal process. As the focus of these programs move from scientific discovery and associated 
model building, to prediction of performance of complex engineered systems using 
computational models, the formalization of the validation process helps focus the program goals, 
prioritize program needs, and adds transparency to the program decision process. 
 
Because many of the items addressed in the sub-boxes of Figure 2.1 rely heavily on expert 
opinion (all items in the upper blue box), the entire planning and execution process is very team 
centric. The make-up of the teams can vary, depending on the specific items being addressed in 
the various boxes. More specialized teams are often appropriate for the items in the lower box, 
especially if the validation hierarchy requires diverse types of experiments and models.  
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Figure 1.1 Validation directed program planning and implementation   

 
 
1.6 Validation versus Credibility 
 
Validation requires the comparison between simulation model output and experimental data. 
Such comparisons provide direct evidence of the ability of a model to simulate the correct 
physics, for the conditions tested. Engineering computational models are often developed to 
provide predictions of behavior for scenarios different from those for which validation data are 
available. As a result, the credibility of the model for the application scenarios requires some 
expert judgment.  
 
The first step in assessing credibility is to identify what phenomena is important to be adequately 
captured by the model to meet the goals of its intended use. A well-accepted process to identify 
and rank the important phenomena is the Phenomena Identification Ranking Table (PIRT, 
Oberkampf and Roy, 2010). This table is developed using subject matter experts and identifies 
the important phenomena, classifies the phenomena as high, medium, or low importance; 
characterizes the current state of the computational model to represent this phenomena, and 
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provides a gap analysis. An extended version of the PIRT will be introduced in the next chapter 
that provides additional information for program planning.  
 
The assessment of model credibility for the phenomena identified by the PIRT for a specific 
application is based on sound modeling practices.  Formal processes have been developed that 
break down these practices into six main elements (Oberkampf et. al., 2007). These are 
 
1. Representation or geometric fidelity – are representation errors corrupting the simulation 

conclusions. For example, does the simplification used to represent bolts in a finite element 
analysis significantly affect the simulation results?  

2. Physics and material model fidelity – how science-based and accurate are the physics and 
material models? Note that results of science-based models may be more credible that non-
science-based models at conditions other than those for which they were tested or calibrated. 

3. Code verification, including software quality assurance activities – are software errors or 
algorithm deficiencies corrupting the simulation results? Are sufficiently formal processes in 
place to minimize the risk of such errors, such as nightly regression runs to look for 
unintentional changes in code output due to code development; and code verification test 
suits to test code predictions against known analytical solutions.  

4. Solution verification – are human procedural errors or numerical solution errors corrupting 
simulation conclusions? – What steps have been taken to ensure that user input errors have 
been eliminated, what evidence is there that the equation solvers converge, and what steps 
have been taken to characterize the uncertainty in predictions due to lack of grid convergence 
(i.e. for finite difference/volume/element algorithms)? 

5. Validation – how accurate are the integrated physics and material models. Model validation 
is an experimental data based assessment of model accuracy, for the conditions of the 
validation tests, which typically involves coupled physics or other phenomenological effects. 

6. Uncertainty quantification and sensitivity analyses – what is the impact of variability and 
uncertainty on system performance and design margins? The sources of these uncertainties 
include environmental uncertainties such as those that affect the initial and boundary 
conditions of the system, model parameter uncertainties such as used in material property 
relationships or other calibrated behavior, numerical uncertainties due to lack of grid 
convergence, and model form uncertainties identified through validation tests and through 
expert judgment. 

 
These six elements are discussed in more detail in a later chapter in Part II of this document. The 
characterization of the overall risk of using a model for prediction is summarized in Figure 1.2. 
The left leg of the figure represents the assessment of the important phenomena for the 
application (PIRT) and the credibility of the computational model based on the six elements 
considered. This leg represents an assessment based largely on human judgment. The right leg 
represents the sources of uncertainty that are rolled up to the application prediction. These 
uncertainties include model parameter, numerical grid convergence, and model form uncertainty 
uncovered by the validation experiments and other sources. The overall risk of using the model, 
given model predictions of performance (or safety) margins, their uncertainty, and the credibility 
assessment can be notionally characterized as shown in Figure 1.3. Note that risk of using model 
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results when the model predicts large design margins relative to the model’s estimated 
uncertainty is less than that if the model predicts small margins relative to the estimated 
uncertainty. Model results for which the assessment of credibility is higher will likely result in 
less risk than results for which little credibility has been established based on the six elements 
discussed above.  
 
The focus of this report is on the validation directed modeling/experimental R&D program 
planning and implementation and not on assessing risk for the users of the models. However, one 
should keep in mind that the ultimate goal is to provide the customer with not only predictions, 
but with information to help identify what the risks are of using the model in the decision making 
process.  
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Figure 1.2 Risk of using a model for an application 
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Figure 1.3 Risk associated with computational simulation: green – low risk, yellow 
– intermediate risk, red – high risk. The Predictive Capability Maturity 
Model (PCMM) is an expert elicitation tool used to assess simulation 
credibility (discussed in Chapter 11). M and U are the margin, and the 
uncertainty in the margin, between the predicted performance and 
performance requirements. 
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PART 1: INTEGRATED PROGRAM PLANNING 
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2.0 THE OBJECTIVE 
 
 
• The modeling objectives specifies in precise terms 1) what the model will be used for, 

2) the predicted quantities of interest, and 3) the role of the model in the design 
decision process for the customer. 

• The modeling objectives serve as the basis for modeling and experimental program 
planning and implementation. 

• The development of the objective requires close collaboration between the customers 
of the model results, experimentalist, model developers and model users.  

 
 
The first step of integrated program planning is to define the objective or objectives of 
the computational simulation for the application. All further efforts discussed in the 
document will be based on the objective or objectives. The analyst requires a clearly 
stated objective to know what is expected of their models and what quantities will 
actually be used by a customer for design decision. The experimentalist will provide 
calibration, characterization, and validation data to the modelers to meet the modeling 
objective. The objective clarifies to the customers exactly what the modeler will provide 
which allows the customer to assess how the model will support the customer for the 
design, planning, and implementation process.  
 
Example Objectives: 
 
1. The computational simulation will be used as a scoping tool to predict the 

thermodynamic efficiency of various potential engine designs. Prototype engines will 
be built and tested for the most promising designs to confirm thermodynamic 
efficiency.  

2. The loss of safety due to breach of a specific design of a storage tank, when exposed 
to a known range of jet fuel based pool fire scenarios, is to be predicted using the 
computational model. The qualification of the tank will be based on one tank / pool 
fire test deemed most stressing based on simulation results. The integrity of the tank 
for other fuel types and wind conditions will be assessed using the computational 
model. 

3. Computation will be used to predict the daily power output of a wind plant, given the 
inflow conditions, terrain, and plant configuration. Computation will be the primary 
source of power output estimates prior to construction of the plant. 

 
Note that each example specifies 1) what is to be predicted, 2) the scenario, and 3) the 
impact of the prediction on the decision process. The first two items are required to 
define the intended use. The last item specifies the impact that the computational model 
has on the final design and informs the modeler as to the rigor that must be exercised in 
developing, validating, and using the computational model. 
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Also note that none of the statements puts a quantitative 
specification on the allowed error in the prediction. If a 
quantitative specification is required, then the modelers 
and the customers must work together to develop a 
‘reasonable’ specification (see side box).  
 
Often, the meaning of terms in the objective needs 
further definition. The term ‘breach’ in the second 
example objective is nebulous. Does this mean the 
initiation of breach, or a crack of more than one inch, or 
a crack of sufficient size to depressurize a container in 
a defined amount of time? A computational model may 
not be able to predict breach with high accuracy. The 
model may be able to satisfactorily predict the initiation 
of plastic deformation, which can be used as an 
indicator of breach. In this case, objective 2 could be 
redefined as follows: 
 

The loss of assured safety due to breach, as 
indicated by the initiation of plastic deformation, of 
a specific design of a storage tank, when exposed to 
known range of jet fuel based pool fire scenarios, is 
to be predicted using the computational model. The 
qualification of the tank will be based on one tank / 
pool fire test deemed most stressing based on 
simulation results. The integrity of the tank for 
other fuel types and wind conditions will be 
assessed using the computational simulation. 

 
The phrase ‘assured safety’ are conditions for which we are confident the system is safe, 
rather than conditions at which the system transitions from safe to not safe. Note that the 
redefined objective provides enough information so that the modelers understand what is 
to be expected of the model in sufficient detail that they can take the next step, that of 
identifying and ranking the physics required to successfully model the quantity of interest 
for the scenarios of interest. The process to identify and rank the important physics is the 
topic of the next chapter.  
 

A cautionary note on specifying 
model accuracy in an Objective 
 
The ability to specify model accuracy 
requirements at this early planning 
stage is very difficult and seldom 
accomplished. While ballpark 
estimates of the prediction uncertainty 
are required to establish if the role of 
modeling is appropriate for the 
application, a specific pass-fail 
uncertainty specification can be 
counter-productive. Often the 
customer and modelers do not know 
the margins of safety that an actual 
design will have, or the details of the 
actual scenario. Designs that have 
large margins of safety can tolerate 
larger uncertainty in model 
predictions. Other applications can 
possess large uncertainties in the input 
conditions (such as uncertainty in 
inflow conditions), which greatly 
effects model prediction uncertainty. 
Customers are primarily interested in 
knowing how large the prediction 
uncertainty is, so that the design can 
build in enough margin to 
accommodate this uncertainty.  
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3.0 PHENOMENA IDENTIFICATION RANKING TABLE 
 
• Provides a structured approach to prioritize physical and other model related 

phenomena for an intended application1   
• Identifies gaps between technical requirements and models, code capabilities, and 

V&V activities 
• Focuses limited resources on prioritized activities that will assess or improve the 

predictive accuracy 
 

3.1 PIRT: Background 
 

The next step in developing a V&V plan is to identify the physics and non-physics based 
phenomena that are important to represent in the computational model to meet the 
Objective defined in the previous chapter. Formalized methodology to identify and rank 
such phenomena was developed by the nuclear power industry (Shaw, et al, 1988, Wilson 
and Boyach, 1998) and has been adapted by other organizations such as the DoE nuclear 
weapons community (Trucano et al., 2002, Pilch et al, 2001), and V&V Code and 
Standards committee (ASME, 2006) and authors (Oberkampf and Roy, 2010). The basic 
tool used for this process is the Phenomena Identification Ranking Table (PIRT).  
 
The goal of a PIRT is to ensure both sufficiency2 and efficiency. Sufficiency is provided 
through a process of consensus building by expert elicitation for an intended application. 
Efficiency is provided through prioritization of the phenomena and gap analysis of the 
simulation and experimental capabilities. 
 
3.2 Who? 

 
The PIRT is developed based largely on subject matter expert (SME) consensus opinion. 
The PIRT development team should be broad based with the team comprised of 
modelers, developers, code users, experimentalist, as well as the customers who are 
familiar with the application as defined by the objective. The inclusion of a Validation 
and Verification (V&V) specialists is beneficial as they are familiar with many of the 
processes that have been developed for V&V that are directly relevant to the assessment 
of model capability. Because the results of the PIRT will be used for program planning, 
the ‘quality’ of the team is paramount to the success of a planning effort.  

                                                 
1 Some of the content in this chapter was taken directly from PIRT: How To developed 
by Amalia Black for internal use at Sandia National Laboratories (SAND2013-6285P). 
Dr. Black is a co-worker of the first author of the present report and gave us permission 
to use this content unquoted.  
2 Sufficiency - The goal of model assessment is to assess whether the model is sufficient 
for the intended application. Note that this does not necessarily require that the 
assessment of the model be for all phenomena touched by the application (i.e. 
completeness), but rather for the phenomena that is considered to have a significant 
impact on the prediction of the QoIs for the intended application.   
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Expert elicitation by its nature is subjective, but can benefit by utilizing information 
through a variety of objective methods, such as sensitivity analyses and numerical grid 
studies using the model, and existing validation results.  
 
3.3 What? 

 
The PIRT is a table that lists the important phenomena in the left column as identified by 
the team, and continues with a column characterizing importance of the phenomena, and 
one or more columns addressing the capability of the model to represent these 
phenomena. A gap analysis is performed with the results indicated by color codes (i.e. a 
stop light scheme). Additional columns can be added to the PIRT to suit program needs.  
For the present work, additional columns are added to aid in program planning. These 
include a description of the issues associated with the identified gaps, proposed responses 
to mitigate the effect of the gaps, and priority of the responses from a programmatic point 
of view.    
The PIRT is based on information gathered from all relevant sources and should be 
updated as activities progress. The initial elicitation approach serves to build consensus in 
the technical community by soliciting and accommodating a broad spectrum of 
perspectives. 
 
3.4 Scope 

 
Identifying all of the phenomena that are relevant at the application scale for complex 
applications can be a daunting and even counter-productive task. The team should focus 
on those phenomena that are important to the Objective that may be inadequately 
represented by the model. The phenomena considered should be those that are important 
on the scale of the application. Examples of types of phenomena that may not be well 
represented by the computational model are listed in Table 3.1. Note that uncertainty 
quantification can be considered as a phenomenon, if the ability to predict the impact of 
natural variability on the quantities of interest is important to the application. 
 
3.5 The Expanded PIRT 

 
While many forms of the PIRT exist (Oberkampf and Roy, 2010), a form that is useful 
for program planning at multiple physicals scales is summarized in Table 3.2. Note that 
this table lists phenomena that are of high or medium importance to the prediction of the 
Quantities of Interest (QoIs) for the application for which the models are suspect in their 
ability to represent, the issues associated with representing the phenomena, and suggested 
responses to address these issues, including scale of possible tests. The inclusion by scale 
allows one to define a validation hierarchy for the tests listed in the last column. Not all 
issues are associated with tests, such as the need to perform a UQ study, a grid 
convergence study, or improve site characterization for use in the model. Guidelines for 
the ranking are provided in the information boxes following Table 3.2. 
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Table 3.1     Examples of phenomena for inclusion in PIRT 

Type Issues Potential Responses 

Physics Important physics 
inadequately represented by 
model 

Model development or experimental 
characterization to better represent the 
phenomena 
 
Model validation to assess the uncertainty 
associated with the inadequately 
represented physics 

 Not clear if important 
phenomena is adequately 
represented by model 

Model validation experiments designed to 
incorporate the effect of the phenomena 

 Interactions between 
important phenomena 

Model validation experiments that include 
the desired interactions  

 Ranking of importance of 
phenomena included in model 

Sensitivity analysis to rank importance for 
the application quantities of interest (QoI) 

Model and 
Geometric  
Fidelity 

Sub-components that affect 
prediction of application QoI 
poorly represented (e.g. 
fasteners represented by tied 
surfaces, e.g. fully welded) 

Sensitivity analysis on subsystem level 
with higher fidelity model to assess 
impact of underrepresented components  

 Geometric fidelity insufficient 
to represent behavior (e.g. 
stress concentrations around 
fillets) 

Sensitivity analysis on subsystem level 
with higher fidelity model to assess 
impact of under-resolved geometry 

 Grid resolution may be 
insufficient to capture 
behavior 

Grid studies (solution verification) to 
characterize uncertainty due to grid 
resolution 

 Fidelity issues due to de-
featuring in model due to 
elimination of sub-
components  

Sensitivity analysis on impact of de-
featuring  

Characterization Inadequate material property 
characterization 

Material property characterization 
experiments (research existing and/or 
develop new) 

 Inadequate inflow, boundary 
condition, or site 
characterization 

Refine characterization of inflow, 
boundary and site conditions to the 
required fidelity using experimental or 
other techniques 

 Inadequate characterization of 
model parameter uncertainties  

Characterize from experimental data, data 
provided in literature, or from new 
experiments 

Uncertainty 
Quantification 

Uncertainty in model 
prediction not adequately 
characterized due to large run 
times of model 

Approximate methods such as the use of 
surrogates, or more advanced UQ 
propagation techniques, to reduce run 
times 
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Table 3.2 Expanded phenomenon identification ranking table 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Phenomenon  Importance at 
Application Level 

Model Adequacy Planning 
Priority 

Issue Response 
including scale 

Physics  Code Val 

Phenom. 1 Medium Low Medium Low Medium Environment 
source terms 
inadequate 

Source term 
development 
followed by 
validation test at 
system scale 

Phenom. 2 High Uncertain Medium Low High Validation 
required 

Validation test 
for phenomena 
at laboratory 
scale using 
XXX… test 
facility 

Phenom. 3 Medium Medium Medium Medium Low   

Phenom. 4 Medium Medium Low Medium High Grid not 
converged 

Formalized grid 
convergence 
studies for sub-
system to 
estimate 
uncertainty 

Phenom. 5 High Uncertain Medium Low High Validation 
required 

Validation test 
at laboratory 
scale using a … 
test apparatus 

Phenom. 6 High Low NA - Data 
based 
model 

Low High Data to 
calibrate 
constitutive 
models 
required 

Look for 
suitable data in 
the literature. If 
such data does 
not exist, 
perform 
experiments at 
laboratory scale 
to develop data 
to calibrate 
constitutive 
equations. 
Validate based 
on independent 
experiments at 
subsystem scale. 
These 
experiments 
should be … 
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Guidelines for Importance Ranking 
High: First order importance of the phenomena. Model adequacy, code adequacy, and 
validation adequacy should be at the “High Level”. 
Medium: Second order importance of the phenomena. Model adequacy, code adequacy, 
and validation adequacy should be at least the “Medium Level”. 
Low: Low order importance of phenomena. Not necessary to model this phenomena with 
high fidelity for this application.  
Uncertain: Potentially important. Importance can be explored through sensitivity study, 
discovery or validation experiments; and the PIRT revised. 
 
Guidelines for Assessing Physics Model Adequacy 
High: A mature physics-based model or correlation-based model is used that is believed 
to adequately represent the phenomenon over the full parameter space of the application 
Medium: Significant discovery activities have been completed. At least one candidate 
model form or correlation form has emerged and is used that is believed to nominally 
capture the phenomenon. 
Low: No significant discovery activities have occurred and model form is still unknown 
or speculative, or the model is known to provide poor representation of the phenomena. 
Response: Inadequacies are addressed through an explicitly stated strategy. This may 
include further model development, acceptance of the inadequacy, the parallel use of 
alternate plausible models, the use of stylized bounding models, or other documented 
strategies. 
 
Guidelines for Assessing Code Adequacy 
High: The intended mathematical model is implemented in the code. An adequate 
regression suite is run routinely, and there are specific problems in the regression suite 
that test the implementation of the specified model. Verification problems have been run 
that test the correctness of the numerical implementation. Enabling code features are fully 
operational. There are no outstanding (reported) bugs or issues that can undermine usage 
of the model. 
Medium: The intended model is implemented in the code. There is an inadequate 
regression suite or the regression suite does not specifically touch the phenomena of 
interest. The verification suite does not address the specific numerical implementation for 
the application. Certain enabling code features are not fully functional. There are no 
outstanding (reported) bugs or issues that can undermine credibility of the proposed 
calculations. 
Low: The intended model is not implemented in the code. The regression suite or the 
verification suite inadequate. Certain enabling code features are not functional preventing 
the calculation from being run. There are out- standing code bugs or issues that must be 
resolved before model usage. 
Response: Inadequacies are addressed through an explicitly stated strategy. This may 
include acceptance of the inadequacy, workarounds, or other documented strategies. 
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Guidelines for Assessing Validation Adequacy 
High: Comprehensive validation evidence to use the model for the intended application. 
Numerical errors and predictive uncertainties of the model or correlation are quantified 
over the full parameter space of the application or over the parameter space of the 
database and the degree of extrapolation to the application is quantified and justifiable. 
The database used to condition the computational model is relevant to the application. 
Medium: Partial validation support for model use in the intended application. Some 
validation evidence exists, but there are known gaps for phenomena of moderate or high 
importance. Numerical errors are unknown. Non-statistical comparisons of experiment 
data such as tabular comparisons or data trace overlays are employed. The degree of 
extrapolation (if any) may not be quantified. The database may not be fully relevant to 
the application. 
Low: Insufficient validation support for model use. No significant comparisons with 
experiment data or ad hoc comparison of experiment “pictures” with prediction. The 
database is not relevant to the application. 
Response: Inadequacies are addressed through an explicitly stated strategy. This may 
include acceptance of the inadequacy, workarounds, or other documented strategies. 
 
Gap Assessment 
The gap assessments can be indicated within the PIRT with green, yellow, and red 
stoplight color coding as shown in Table 3.2. Gaps are defined as shortcoming between 
the importance level and the current model, code, validation or material adequacy. 
Green means that there is no gap, i.e., current adequacy is at the same level as the 
importance level. For example, a phenomenon with medium importance that has medium 
adequacy would be colored green. Yellow means that the adequacy is one step below the 
importance level, and red means the adequacy is two steps below the importance level. 
Blue is assigned to phenomena whose importance is currently unknown. The color code 
also denotes priority by which gaps should be addressed from a scientific perspective; 
that is, resources should first be focused on red and then yellow, while green requires no 
new resources. 

 
Guidelines for Issues and Responses 
The last two columns of the expanded PIRT provide more information of the issues 
associated with modeling of the phenomena and the specific responses planned to address 
the issues. These columns should be completed prior to the planning priority column (see 
box below). The expanded PIRT addresses the types of experiments that must be 
performed for characterization and for validation across the scales (or complexity) of the 
validation hierarchy. A graphical view of this hierarchy is shown in Figure 3.1 for the 
scales associated with wind plants. The validation hierarchy is discussed further in the 
next section. 
 
Guidelines for Planning Priority 
The gap assessment is based on scientific and engineering subject matter expert opinion 
and does not consider the resource required to address the issues listed in the PIRT. The 
priority for planned activities ideally follows the gap assessment results, with the gaps 
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denoted by red generally receiving the highest priority from a planning/resource 
perspective. One method to denote planning priority is to specify the anticipate time line 
of each activity (by quarter, or by year). Some significant gaps may require more 
resources than are available (time, experimental facility, computational resources) and as 
a result, be planned for later in the program (i.e. lower planning priority). 
 
The program planning priority will be heavily impacted by the availability of resources. 
While the subject matter experts can take the first cut at prioritizing the work, the final 
priority will be very dependent on organizational resources, the needs and resources of 
the program directors, and the customers. As a result, program decision makers must be 
included in prioritization process as they will understand resource limitations that will 
likely have a significant impact on the planning prioritization results.  

 
3.6 Validation Hierarchy 

 
The expanded PIRT is the initial step in identifying the validation hierarchy. Generally, 
suites of experiments are performed over a validation hierarchy for complex applications. 
These are often of three types; material characterization experiments, ensemble validation 
experiments, and accreditation experiments. Ensemble tests can include separate effects 
tests (designed to test specific physics), integrated effects tests (designed to test 
interacting physics). Data from material characterization experiments are used to 
calibrate constitutive models, or to test calibrated models, are generally less expensive to 
perform, and can produce more and higher quality data (i.e., over multiple material 
samples). Ensemble validation experiments represent suites of experiments designed to 
test a computational model’s ability to represent various aspects of the physics or 
subsystems relevant to the application. They generally do not represent the full 
complexity of the target application of the model. Data and corresponding computational 
predictions are compared to assess computational model performance. These experiments 
may or may not provide sufficient data to characterize variability across similar tests. 
Generally, these experiments are more expensive, producing less data of perhaps lower 
quality.  Accreditation tests can involve sub-system or full system testing with 
application hardware under conditions more closely representing the design conditions or 
regulatory requirements of the target application. Such experiments are typically 
expensive, resulting in very limited data that may have very limited validation quality. 
Figure 3.1 illustrates one representation of the validation hierarchy. The complexity of 
the physics represented increases as one moves from the base of the triangle to the top. 
The layers illustrated range from material and constitutive properties characterization test 
(i.e. stress-strain curve, temperature dependent thermal conductivity), to separate effects 
of physics tests (elastic response, thermal radiation), to integrated effect/physics tests 
(coupled conduction and convection heat transfer), to sub-system tests (typically 
engineered sub-systems with behavior defined by coupled physics), to full systems at the 
top of the hierarchy. The experiments in a layer may represent the same physics 
evaluated under different conditions, or may represent different physics at the same or 
different conditions expected for the application. Other authors define the layers in the 
hierarchy differently, but the concept is the same. For example, Oberkampf and Roy 
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(2010) denote the layers in the hierarchy as 1) unit problem tier at the base, 2) benchmark 
tier, 3) subsystem tier, and 4) system tier. Other discussions on the validation hierarchy 
are provided by Pilch et al. (2001), Trucano et al. (2002), ASME and (2006b). 

 

 
Figure 3.1 The validation hierarchy 
 

 
Figure 3.2 represents a general relationship between the complexities of the experiments 
relative to the location in the hierarchy. Note that material characterization experiments 
generally use geometrically simple material samples and are ideally performed over the 
range of environmental conditions (for example, the temperature range) expected for the 
target application. Ensemble validation experiments represent more geometric and 
physical complexity, but are often not performed over the full range of environmental 
conditions expected for the target application. For example, ensemble validation 
experiments may be performed under lab conditions that do not represent the full 
complexity of conditions expected during the operation of the system (e.g. during a 
flight). Finally, because fewer accreditation experiments can be performed due to their 
expense, and because they are performed for a limited number of conditions, they cannot 
represent the entire design space of the intended application of the computational model. 
They may be useful as “acceptance” tests for the computational model. 
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Figure 3.2 Experimental hierarchy complexity (based on Hills et al. 2008) 
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4.0 HIGH LEVEL PROGRAM PLANNING BASED ON THE PIRT  
 

• The planning of the program is based heavily on issues and responses identified in 
the expanded PIRT and on the resource and other limitations of the program. 

• Many of the program limitations are not scientific, such as the lack of sufficient 
funding, impact of funding cycles, lack of experimental capability, lack of 
sufficient computational resources, or insufficient model capability to meet the 
goals in the desired time frame. 

• Planning often requires significant compromise and can result in exploring other 
approaches (such as qualification based on testing) to meet the customers’ needs. 

 
With the completion of the 1) Objective and the 2) extended PIRT, one can initiate more 
detailed planning to address the responses identified in the PIRT. This planning can lead 
to more specific tasks for 1) model development, 2) exploration of issues that may have 
an impact on prediction, 3) characterization experiments and the development of 
characterization methodology for the required inputs for the computational model, and 
model validation experiments to assess predictability for those issues that are of concern. 
 
Because it is rare that a program has the resources to address all significant items 
identified in a PIRT, or in some cases to address even some of the high priority issues, 
compromises must be made during the planning process. The formal processes for such 
planning is outside the scope of this document and is very dependent on organizational 
structure and resources, funding sources, the organization’s historic approach to planning, 
and the needs of their customers. Decision making planning teams often include senior 
scientist/engineers who can provide scientific input on the compromises that result when 
key issues that have been identified as concerns in the PIRT are either left unaddressed or 
delayed to later in the program, and can recommend other approaches to meet program 
goals. 
 
Part II of this document assumes that the decisions have been made as to the types of 
experiments to be executed (or at least planned). Part II specifically addresses 
collaborative methodology to develop individual validation experiments to support the 
objective defined in Chapter 2 of Part I. 
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PART 2: INTEGRATED EXPERIMENT AND 
MODELING PLANNING AND EXECUTION 
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5.0 OBJECTIVE OF THE A MODEL VALIDATION EXERCISES 
 
• The validation exercise objective specifies in precise terms 1) the intent of the 

experiment, 2) the predicted/measure quantities of interest that will be compared, 3) 
how the results will be used to support system level prediction, and 4) the basic 
configuration of the experiment for a validation issue identified in the PIRT. 

• The development of the objective requires close collaboration between the customers 
of the model results, experimentalist, model developers and model users. The 
customers may be other modelers that use the results as input to their models on the 
next larger physical or system scale. 

 
5.1 Background 
 
The first step is to define the objective or objectives of the validation exercise. The 
planning for the modeling and the experimental work, as well as the post experiment 
validation assessments, should be based on this objective. One of the most important 
considerations in specifying an objective is that the experimental objective supports the 
overall system objective defined in Chapter 2, and addresses the issues identified in the 
PIRT. The three items that a validation objective should address are discussed below. 
 
5.2 Experimental Intent 
 
The experimental intent should be a validation issue that was identified in the PIRT as a 
program priority. The issue may relate to sub-phenomena (e.g. does the model capture the 
important influence of temperature dependence in the performance of a system), related 
to coupled phenomena (does the model adequately represent the decomposition of foam 
as a function of time when exposed to a high temperature convective environment), 
related to a component or subsystem performance (does the model adequately predict 
power output for a single wind turbine), or to a system level response. The validation 
issue specified in the PIRT may be indirectly addressed by the validation exercise due to 
the inability to design and perform an experiment that can isolate just that one issue. For 
example, a validation experiment generally represents several coupled phenomena, one of 
which may be the one identified as a prime concern in the PIRT. 
 
5.3 Predicted/Measured Quantities of Interest 
 
There are several considerations in choosing the Quantities of Interest (QoI) for the 
validation experiments.  
 
1. Ideally, the relation between the validation QoI, and the quantity of interest for the 

full system as defined in the system objective, should be known and quantifiable. For 
example, if the QoI is output voltage for a component that is the input voltage for the 
next component, the relation is direct. Unfortunately for complex system models, this 
relation is often indirect. One may measure temperature and heat flux in a validation 
experiment whereas the QoI for the system is time of failure of the system due to 
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response of multiple components to a hot environment. This indirect relationship 
complicates the interpretation of the results of the validation exercise, but is often 
unavoidable. 

2. The QoI should allow direct comparison between experiment and model results. If the 
measurement represents an average over some area (e.g. flux), then the model 
prediction should also represent the same average 

3. The QoI may be a post processed quantity based on measurements. The QoI in this 
case may be power as a function of frequency. The model may directly calculate the 
power spectrum, or the predicted acceleration time histories may be post processed to 
give the corresponding spectrum. 

4. The uncertainties in the QoI for both the experiment and the model prediction should 
be estimated. The end goal of a validation exercise is generally to measure 
discrepancy (bias) between the experimental results and the model prediction and the 
uncertainty on this bias (ASME, 2009).  
 

5.4 Use of the validation results for the system level 
 
The impact of potential validation results on the use of the model at the system level is 
not always addressed. As a result, this aspect of the validation is often neglected during 
the planning stages. Examples of typical model use scenarios based on validation results 
are listed below: 
 
1. The resulting discrepancy or bias (experimental measurement minus the model 

prediction) plus or minus its uncertainty for the predicted output of a component will 
be used to characterize input and its uncertainty for the next component. Expert 
judgment is required as to when the discrepancy and its uncertainty are sufficiently 
large to cast doubt on the ability of the model to predict performance of the 
component over the range of scenarios for which the system is designed but not fully 
tested. 

2. The model prediction, accounting for the resulting discrepancy plus or minus its 
uncertainty, may still provide conservative but useful results. For example, consider a 
computational model that under-predicts voltage output for a component. This under-
predicted voltage may still exceed the minimum output voltage specifications for the 
component, and as a result provides a useful conservative estimate.  

3. Expert judgment is used to evaluate whether the resulting discrepancy and associated 
uncertainty represents a risk in using the model for the intended application at the 
system level. If so, the model will be considered invalid and a mitigation strategy will 
be developed (e.g., additional model development, experimental characterization of 
the performance of the component, redesign of the component so that its performance 
is easier to predict using a model).  

4. If the model fails to meet some prediction criteria for a particular application, the 
model will be calibrated to the validation results, and used with the understanding that 
the model is only useful for the scenarios covered by the validation experiments.  

 
Clearly, expert judgment plays a key role in the decision to use the computational model 
for the application. The ideal approach would be to map the model validation 
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discrepancies and their associated uncertainties to the predicted application QoI. This 
would allow one to better judge the impact of validation discrepancies at the subsystem 
level on model predictions at the application level. While this topic has been addressed 
(Hamilton and Hills, 2010a, 2010b, Hills, 2013, Kennedy and O’Hagan, 2001), the 
robustness of these approaches has not been established for cases that the application QoI 
is different from those measured in the validation experiments, and as a result, no 
recommendations as the suitability of these approaches are include here. 
 
5.5 Basic configuration of the experiment 
 
The basic configuration of the experiment is a statement about the configuration of the 
test article and the test apparatus. For example, the configuration can be a scaled model 
of an airfoil in a wind tunnel, or a component in an environmentally controlled oven, or a 
test article tested in an outdoor facility exposed to a well monitored natural environment. 
More detail on the configuration and data acquisition for the experiment are developed in 
later planning stages. 
 
5.6 Example Objectives 
 
Example objectives for the validation experiments are listed below: 
 
1. The voltage output of multiple samples of component A will be measured for a pre-

defined range of environmental temperatures and component inputs, and the results 
compared to model predictions for voltage output.  The resulting differences between 
prediction and observation will be used to establish whether the model can be used to 
evaluate component response for untested temperatures and to estimate the expected 
uncertainties in the model predictions.  

2. A series of puncture tests will be performed to evaluate the ability of the 
computational simulation to predict puncture as function of a tapered spike geometry 
and incoming velocity. The QoIs will be the cross-section area of the puncture crater 
and the depth of penetration of the spike. If the mean cross-section areas are within 
30% of those means observed for each incoming velocity and spike geometry, and 
show the correct trends, the model will be used to provide insight into crater damage 
for other spike geometries over the same range of velocities for prototype design 
purposes.  

3. Wind tunnel comparisons between measure and predicted velocity downstream of a 
test article will be made in several cross-flow planes. The differences between 
observed and predicted drag on the test article, and outflow velocities at the planes of 
measurements and the associated uncertainties will be used to access, through expert 
judgment, whether the model needs further development or whether the model and its 
uncertainties are suitable for use at the full scale.  

4. Wind plant power production will be compared to predicted power production over 
several time scales, atmospheric boundary layer stability and inflow conditions, and 
turbine yaw conditions using a specified engineering model. The resulting differences 
between prediction and test observations of power, coupled with expert judgment, 
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will be used to assess model adequacy to for use in prototyping plant control 
methodology. 

 
Note that the basic configuration and intent of the experiment, the predicted/measured 
quantities of interest, and a brief statement on how the results will be used to support the 
system level (full scale) analysis are specified in the above statements.  
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6.0 CONSIDERATIONS IN THE DESIGN AND IMPLEMENTATION 
OF A MODEL VALIDATION EXERCISE 

 
• The design of successful validation exercises requires close collaboration between the 

experimentalist and the modelers during the conceptualization, design, execution, and 
post-processing phase of the experiments.  

• The most successful validation exercises are those for which the computational model 
was used to help design the experiment. 

• Uncertainty of the measurements and of the model predictions of the measurements 
plays a key role in model validation. 

 
The objective defined for the validation experiments discussed in Chapter 5 can now be 
addressed in the design of the validation exercise. The phrase ‘validation exercise’ is used 
to reflect that the validation process involves experimental design including data 
acquisition design, modeling to insure that the conditions and scope of the experiment are 
sufficient to adequately test the model, the execution of the experiment and the 
computational model for the experiment as it occurred, the post-processing of the results 
including the evaluation of the validation measures and their uncertainties, and the 
interpretation of the results.  
 
The focus of this chapter is on issues that should be addressed to ensure that the 
experimental results are suitable for model validation. The process to address these issues 
requires close and continuing collaboration between the experimentalists and the 
modelers.  
 
6.1 Quantities of Interest 
 
The experimental objective defines the quantities of interest (QoI) that are tied to the 
overall system objectives defined in Part I. The focus during the design and execution of 
a validation experiment should be on accurately measuring the experimental QoIs and 
assessing the uncertainty in the measured values. However, it is recommended that other 
quantities be measured during the experiments to obtain additional information on test 
article response, and if appropriate, the test apparatus response. For example, the 
validation QoI that will be used to assess the model may be heat flux on a surface. 
Temperatures can also be monitored at various locations throughout the test article at 
little added expense relative to the overall expense of the validation exercise. This 
additional information provides useful insight as to whether the experiment and test 
article behaved as expected, and often provides valuable information when unexpected 
results occur with either the experiment or the model predictions. 
 
6.2 Physical Simulation and Computational Simulation 
 
Ideally, a validation experiment provides a good representation of the response of a 
component or system under conditions that it will see during operation at the system 
level.  Unfortunately, an experiment generally cannot exactly reproduce all of the 
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variables of the anticipated environment; the test apparatus used can only simulate certain 
aspects of the planned environment; the test article is often a scaled, de-featured, or a 
prototype version of the article as it will be fielded; and there are often sensors installed 
on the test article that can affect the test article response. Thus, an experiment is usually, 
at most, a physical simulation of the article, component, subsystem, or system that will be 
fielded, and its field environment. Likewise, the use of a computational model to predict 
a test article response requires significant care and judgment as to how the model is 
defined, the level of geometric fidelity required to represent the test article response, and 
the impact of uncertainties associated with the required model inputs.  In the end, the 
definition and execution of the model used to predict the experiment, and the design and 
execution of the experiment itself, requires significant judgment. One must not lose sight 
that both the model and the experiment represent simulations of the true behavior of the 
components, subsystems, or systems, as well as the environments during planned fielded 
operation.  
 
6.3 Who? 
 
The validation team should be composed of modelers who will support the design of the 
experiments, modelers whose models will be assessed, experimentalist who will design 
and execute the experiments, and customers of the results. The inclusion of V&V 
specialists is useful as these specialists are familiar with the processes described in this 
document. They generally have the statistical and uncertainty quantification background 
to help with the assessment of uncertainty in the model error, and can help with the 
interpretation of the results from a statistical perspective. Note that there may be more 
specialized representation on the validation team than there was on the PIRT team 
discussed in Part I, since the design and implementation of a specific validation 
experiment may require a more specific skill set. The customers may be internal 
customers who are eventually responsible for delivering a system level simulation 
product to another customer. The customer may be the systems engineer who will be 
ultimately be responsible for the design and qualification of a system. Multiple modelers 
with competing models can be accommodated during the design process to insure that the 
experiments can be used to assess strengths and weaknesses of various modeling 
approaches.  The important aspect of the validation team is that it includes those that 
produce the data, those that model the experimental results, and those who do the 
comparisons (often statistical) and help interpret the results, all with a clear 
understanding of the customers’ needs.  
 
The validation team should remain in close communication throughout the validation 
exercise. There are often issues that must be addressed that become evident during the 
experimental design and fabrication process (of the test item and of the test apparatus). 
The modeler will often have strong opinions on how different approaches to address 
these issues affect the ability of the model to represent the experiment, and the ability of 
the experiment to address the issues associated with model validation. For example, 
based on issues with design or fabrication, an experimentalist may be concerned that a 
particular input cannot be adequately controlled. The modeler can often provide useful 
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guidance on how well the input really needs to be controlled, or whether monitoring the 
transient behavior of the actual input conditions is sufficient.  
 
Visits by the modeler to the test facilities often result in additional questions by the 
modeler on the configuration and conditions of the experiment, as well as provide the 
modelers with more insight as to some of the modeling assumptions that are made. It is 
rare for a modeler to leave their models unchanged after visiting the experimental site, as 
they invariable realize that some of their assumptions about the experiments were 
incorrect. In many cases, these assumptions can be addressed by modifying the model to 
better represent the experiment as it is actually configured, resulting in an improved 
validation exercise.  
 
Because experimental anomalies often arise during the experimental execution, especially 
for more complex experiments that are further up the validation hierarchy, having a 
modeler and the V&V Subject Matter Expert (SME) present to see these anomalies and 
work with the experimentalist to hypothesize the source and impact of these anomalies 
can often help improve the overall validation process. Sometimes these anomalies can be 
treated by adjusting the input or configuration of the model, or by post processing the 
results. 
 
Differences between experimental data and model predictions are expected, even for 
‘perfect’ models, due to the presence of uncertainty in both the experiment and in the 
parameters of the model. However, the observations of trends in the validation 
differences over time and space suggest that systematic effects are present. Often these 
trends are due to model form error. These trends can also be due to systematic error in the 
measurements, such as a thermocouple with a poor thermal contact or high lead losses, or 
calibration issues associated with the data reduction equations that convert the quantity 
measured (e.g. electrical resistance) to the quantity desired (strain).  These issues are best 
resolved through collaboration between the modelers and the experimentalist.  
 
6.4 Experimental Configuration and Computational Models 
 
The experiments should be designed to address the model validation issue or issues 
identified in the PIRT of Part I. The team should understand the basic concept of how the 
validation results will be used to inform the decision maker as to the suitability of the 
model for the intended application and the possible additional work that may be required 
if the validation results indicate that the model is not adequate. The ultimate 
characterization of what is suitable will rely heavily on interactions between the analyst 
using the systems model and the customers or their representatives. 
 
For the case of validation, the computational models should simulate the validation 
experiment as it was realized, requiring sufficient knowledge of the test article, the 
experimental configuration and its impact on the test (e.g. wind tunnel wall effects), the 
environmental conditions (e.g. boundary and initial conditions), the impact of sensors on 
the performance or response of the test article, and the uncertainties such as those 
associated with the diagnostic error, control of the environment, and test article 
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configuration. In some cases, the model must also model the test apparatus as there may 
be two-way interactions between the test article and the test apparatus response.  
 
In contrast to discovery experiments where the experimentalist often attempts to carefully 
control the environment (e.g. maintain a constant temperature over the duration of the 
experiment), model validation experiments can be less controlled as long as the actual 
environment is measured during the experiment and the model is capable of incorporating 
the environment as it occurred. Thus validation experiments may require less control of 
the environment, but require detailed, accurate measurements on how the environment  
and other model boundary conditions vary across space and time. 
 
During the design phase, the experimentalist and modelers should agree on the following: 
 
• the basic experimental configuration including the characteristics of the test article 

and test apparatus as it affects test article response, 
• the location and type of instrumentation used to monitor environmental conditions 

that are required as input to the model, 
• the location and type of instrumentation used to monitor the response of the test 

article and perhaps the test apparatus, 
• the sampling rates and spatial resolution of the data required,  
• the supplemental experiments required to characterize those properties of the 

experiment that are required by the model (e.g. thermal properties of the materials in 
the test article, turbulence characteristics of a wind tunnel), and 

• the methodology used evaluate uncertainty in the measurements and the model 
predictions.  

 
Because the estimation of uncertainty is a key component in a validation exercise, a 
separate section is provided on uncertainty in a following chapter.  
 
6.5 Experimental Characterization 
 
Experimental characterization is the estimation of those quantities that are used as input 
for the model of the experiment. Experimental characterization includes  
 
• measured or controlled initial and boundary conditions, 
• measured or controlled loading conditions, 
• characterization of the material properties, experimental configuration (including 

geometry), site conditions, or any other quantity that must be used as input for the 
model. For example, coupon tests are often performed on material samples to 
evaluate stress-strain curves. Site characterization experiments or analysis is often 
performed to characterize the topography, soil properties, vegetation, wind 
characteristics, thermal characteristic, and other characteristics that can be utilized by 
the computational model, and 

• characterization of the uncertainties in the above model input quantities and the 
measurements so that that the modeler can account for these uncertainties in 
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evaluating the corresponding uncertainty in the model prediction of the experimental 
measurements.  

 
Note that the last two bullets represent supplementary experiments that must be planned 
as part of the validation exercise. 
 
6.6 Failed Validation Exercises 
 
There are several issues that can lead to the failure of a validation exercise. 
 
• Sufficient information about the test article and about the experiment (such as 

adequate characterization of a boundary condition) as it was executed, was not 
acquired. As a result, the analyst must make assumptions about certain aspects of the 
experiment in developing their model, which can call into question the validity of the 
resulting assessment. Validation experiments are different than discovery experiments 
or proof-of-concept experiments in that they require a strong focus on the acquisition 
of the information required so that the computational model can be unambiguously 
applied to the experiment as it occurred. 

• The uncertainty in 1) the environmental conditions, 2) the measurements of response, 
and 3) the configuration of the test article or test apparatus are not sufficiently 
characterized. Note that, due to uncertainty, one always expects to see differences 
between experimental measurement and model prediction, even for perfect models. 
The question is whether the model simulation is consistent with the experimental 
results, given the uncertainty in the validation exercise. Answering this question 
requires estimates of both the experimental and computation uncertainty. 

• The experiment, as designed and executed, did not provide data that could be used to 
assess how well the model represents the phenomena of interest. For example, the 
conditions of the experiment and the resulting response of the test article may not be 
sensitive to the phenomena of interest. Or the experiment may be sensitive to multiple 
phenomena, all of which may not be well represented by the model. In the latter case, 
one may have compensating model errors suggesting better representation of the 
phenomena by the model than actually exists. Where significant differences do occur 
in this last case between experiment and model, establishing which of the competing 
phenomena is the cause for the difference can be difficult.  

 
Overall, there are many compromises that must be made in designing a validation 
exercise. Close collaboration between the analyst who will be modeling the experiment 
and the experimentalist is required during experiment planning, design, and execution to 
minimize the risk of ambiguous results.  
 
6.7 Modeling Supported Design 
 
The most robust validation exercises are those that are modeled in support of the design 
of the experiment. Modeling is often used to help define the temporal and spatial extents 
of the experiments, to help optimize sensor location, and to help optimize the boundary 
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conditions and test article configuration so that the test article response occurs in a 
fashion that is sensitive to the phenomena of interest.  
 
Modeling during design is also important to the modeler, as it is the modeler’s 
responsibility to work with the experimentalist to obtain the right information so that the 
model can be applied to the validation experiment. If the model is developed and 
executed during design, the modeler is required to estimate the information listed in 
Section 6.5 plus information that is obtained from other sources (e.g. properties for 
common materials). The modeler thus can develop an inventory of the information 
required to unambiguously apply the model to the experiment, and can work with the 
experimentalist to develop such information, when appropriate.  
 
6.8 Validation Metrics and the Role of Uncertainty 
 
The validation team should plan on how the model predictions will be compared to the 
experimental observations during the design phase.  For physics based models, these 
comparisons are generally based on quantitative validation metrics or measures. 
 
Several types of quantitative validation measures or metrics have been proposed. These 
measures include mathematical metrics, which requires that the values for the metrics be 
non-negative and meet other mathematical requirements for the metric. The measure can 
also be in terms of a probability, i.e., the probability of the observed differences between 
model predictions of a valid model and the experimental observations, given the modeled 
and measured uncertainty in the validation exercise. The measure can be a signed 
quantity, such as a signed difference between model prediction and experimental 
observation, and the uncertainty in this difference due to experimental and prediction 
uncertainty.  
 
This last measure often provides the most flexibility for the following reasons: 
 
• Customers of computational model results are generally interested in accuracy as 

measured by difference between prediction and true value (defined as model bias), 
rather than some more abstract measure of accuracy, such as the probability of the 
difference.  

• For cases where model errors are significant, customers are often interested in the 
sign and ranges of possible model errors (i.e. under or over-prediction), as this range 
can have a significant bearing on the suitability of the computational model to assess 
whether a design criteria is met in a conservative fashion. These ranges are sometimes 
characterized in terms of several multiples of standard deviations around the expected 
model error.  

• Measures that assess validity relative to uncertainty in the validation exercise can be 
misleading, as the larger the uncertainty that exists in a validation exercise, the more 
likely that an invalid model prediction will appear consistent with the data, within the 
uncertainty of the exercise. In contrast, estimating model error (e.g. differences or 
biases) and its uncertainty, leads to ranges of the estimated model error, clearly 
communicating the impact of uncertainties associated with the validation exercise.  
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• The estimation of model error and its uncertainty reflects the accuracy of the model 
predictions relative to the experimental observations, independent of the accuracy 
requirements of the intended applications. This allows one to characterize the 
computational model error and uncertainty, and then evaluate acceptance or rejection 
of the usefulness of the computational model as a separate step as the design evolves 
and the design margins become more evident. 

 
One of the distinguishing features of validation exercises is the central role of uncertainty 
in the validation comparisons. This uncertainty is due to the characterized uncertainty in 
the measurements and the uncertainty in the model predictions. There are often choices as 
to where to account for the uncertainty. For example, measurement uncertainty is 
generally considered the uncertainty induced by the instrumentation and data acquisition 
systems, or due to the uncertainty introduced through the use of data reduction equations 
(i.e. calibrated models that convert the quantity measured to the QoI such as electrical 
resistance to temperature, or accelerometer data to shock response spectrum). The 
International Organization for Standardization on the Guide to the Expression of 
Uncertainty in Measurements (ISO GUM, 1995), the ASME Code and Standard PTC 
19.1 (ASME, 2006a), and Coleman and Steele (2009) provides guidance to estimate 
measurement uncertainty due to measurement and data reduction equation uncertainty. 
These standards form the basis for the ASME Verification and Validation standard 
ASME 20-2009 (ASME, 2009).  
 
The impact of other forms of uncertainty on measurements, such as environmental or 
boundary condition uncertainty can be considered as either an uncertainty in the 
measurements or in the model. Unless the experimentalist performs repeated experiments 
to explicitly evaluate the variability in the measured QoI’s due to environmental and 
other sources of uncertainties, such uncertainties generally require a model to define a 
relationship between the uncertain conditions affecting the performance of the test item 
and the uncertainty in its response. Because this model is often the model being tested, 
the incorporation of these forms of uncertainty is almost always through the 
computational model. Ultimately, the modeler will be responsible for characterizing the 
uncertainty in their prediction due to model input uncertainties, such as environmental 
uncertainties for the anticipated application.   For this reason, the following 
recommendations are made: 
 
Experimental Uncertainty 
The estimation of diagnostic and data reduction uncertainty should be the responsibility 
of the experimentalist. As discussed in ISO GUM (1995), the sources of these estimates 
can be statistical analysis of repeated measurements or through other sources such as 
sensor manufacture specifications, analysis of uncertainties in data reductions equations, 
and expert opinion. 
 
Computational Model Uncertainty 
The sources of uncertainty that are typically considered by modelers for validation 
experiments are 1) model parameter uncertainty which includes parameters associated 
with initial and boundary conditions, environmental conditions, forcing functions, and 
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constitutive equations, and 2) solution verification uncertainty which is the uncertainty 
associated with lack of linear or non-linear equation solver convergence and the lack of 
finite element/volume/difference grid convergence. 
 
Methodology to estimate model uncertainty due to parameter and grid convergence 
uncertainty is provided in Oberkampf and Roy (2010), in ASME (2009), and in Roache 
(1998, 2009).  
 
Because the roll of uncertainty is so important to a validation exercise, approaches used 
to estimate this uncertainty should be identified during the validation exercise planning 
stage. 
 
Each of these sources of uncertainty are discussed in the following chapters. 
 
6.9 Archiving, Challenge Problems, and Supporting the Broader 
Modeling Community 
 
Validation experiments provide data that are very useful to a broader modeling 
community if the information that was required to test the models is adequately 
documented and archived. The organization of the validation exercise into a challenge 
problem provides a well-established approach Babuška, et al. (2008) and Helton and 
Oberkampf (2004) to insure that the experiment and its data is adequately archived and 
documented for the broader community.  
 
A challenge problem is a carefully designed validation exercise for which all of the 
required information is made available to modelers from multiple organizations. The 
modelers from the different organizations develop and apply their models to predict the 
experimental measurements to be used for validation. Generally, a workshop is organized 
for the modelers and experimentalist so that results can be compared, issues identified, 
and lessons learned.  Several approaches are often used in distributing data to the 
modelers. The first approach is to distribute all data prior to the workshop, including the 
QoI response data from the experiment that will be used for assessment. This allows the 
modelers to do the comparisons between experiment and prediction prior to public view. 
Unfortunately, this also allows the models to be tweaked based on the observed response 
data prior to presentation at a workshop. A second approach is to perform a blind 
validation exercise. In this case, all data required to configure and run a computational 
model for the experiment (geometry, boundary conditions, uncertainties, etc.) are 
provided prior to the workshop. The modelers then provide their predictions of the QoI to 
a third party, who compares the results to the experimental response data. The third party 
reports the results at the workshop and through a report, and releases the remaining data. 
The reported results can be identified by organization, or can be presented anonymously. 
If more then one validation experiment is planned, a hybrid approach can be utilized for 
which the experimental data is released prior to modeling for experiment 1 and held until 
after independent validation (i.e. blind) for experiment 2.  
 
The challenge problem approach to a validation exercise has several advantages. 
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• The use of the data by external organizations helps insure that the validation 

experiments are well documented. 
• Multiple approaches to modeling are demonstrated and tested. 
• The models from multiple organizations tend to be fairly well developed as the results 

will be presented at a workshop. 
• The variability between model approaches (often reflects analyst to analyst 

variability) becomes evident as the results are shown. 
• The information archived and documented from the validation exercise can be used 

by participants and non-participants well after the workshop, to assess and to drive 
future development of computational models.  
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PART 3: UNCERTAINTIES IN MODEL 
VALIDATION 
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7.0 OVERVIEW OF UNCERTAINTIES RELEVANT TO MODEL 
VALIDATION 

 
• Uncertainty in the measurements and in the model predictions plays a key role in 

model validation. 
• There are many approaches to classify uncertainty. The choice should be based on the 

needs of the application. 
• Methodology is well established to estimate measurement uncertainty and to quantify 

several sources of model prediction uncertainty.  
 
The word “uncertainty” in a measurement or in a model prediction conveys the concept 
of doubt in the validity of the results to represent the true value of interest. Many 
approaches are used to classify or characterize uncertainty, and there can be different 
interpretations of particular approaches. The following is a brief overview of different 
concepts of uncertainty. More detail in estimating model uncertainty will be provided in a 
later chapter. We begin with a discussion of aleatory and epistemic uncertainty.  
 
7.1 Aleatory and Epistemic Uncertainty 
 
Aleatory or random uncertainty (also called statistical uncertainty) is uncertainty that is 
due to a natural randomness in a phenomena or process. Because this randomness is 
naturally occurring, it is irreducible. Consider multiple samples of a component. The 
performance of this component will vary from component to component due to the 
variability introduced due to manufacturing tolerances, and due to the variability in the 
materials themselves. This variability is inherent in the performance of the components 
and cannot be reduced without improving the manufacturing process, or changing 
material selection and component design. This form of uncertainty in performance is 
represented by the probability of occurrence of the performance outcome, given the full 
population of components. Familiar statistical methodology is applied to estimate either 
characteristics of the uncertainty (standard deviation), or to estimate the population 
probability distribution function (PDF). Note that, while the PDF is fixed for the 
population of components, this distribution must be estimated if one cannot sample the 
full population. 
 
Epistemic uncertainty is due to lack of knowledge about the process that can be reduced 
if more knowledge is available. For example, the height of John sitting at the table is 
unknown. However, the uncertainty in estimating his height (epistemic) can be reduced 
by 1) asking John to stand up, and further reduced by 2) measuring John’s height. If one 
is interested in the height of any person who might enter the room, then there is no 
specification of which person one is talking about, and their potential height could be any 
height from the population of heights (aleatory). Thus the question being asked (specific 
vs. any) can have an impact on the classification as to whether an uncertainty is epistemic 
or aleatory (Hofer, 1996). One can use sampled heights from the population to estimate a 
probability density function (PDF) for the population. The uncertainty due to randomness 
of heights within the population is aleatory, the true PDF for the population is fixed; and 
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the lack of knowledge of this true PDF is epistemic (i.e. we must estimate the true PDF 
from a finite number of samples). The epistemic uncertainty associated with estimating 
these PDF’s can in principle be reduced with additional random samples from the 
population.  
 
Some application fields refer to aleatory uncertainty as variability, random uncertainty, or 
irreducible uncertainty; and epistemic uncertainty as reducible uncertainty, systematic 
uncertainty, or simply uncertainty.  
 
The approaches used to characterize epistemic uncertainty are varied. Example 
approaches include Dempster-Shaffer evidence theory, Probability-Box methods, Fuzzy 
Logic, and Bayesian and Maximum Entropy approaches for which the epistemic 
uncertainties are conceptualized as probability based plausibilities (Dempster, 1967, 
Shafer, 1976, Ferson et. al., 2003, Zadeh, 1978, Jaynes, 2003, Gzyl, 1995). As these 
approaches and associated tools mature, the ability to use these methods for applications 
will increase.  
 
7.2 When is the distinction between epistemic and aleatory 
uncertainty useful? 

7.2.1 Limited number of samples 
 
One of the more common examples of epistemic uncertainty encountered in statistics is 
that associated with the estimation of probability distributions based on a finite number of 
samples from an aleatory population representing a random process.  Note that if one had 
access to the entire population, one could calculate its mean, standard deviation, and as 
well as the probability or cumulative probability of an occurrence of any outcome 
without uncertainty.  In reality, one generally has a limited number of samples from a 
population, resulting in uncertainty in the estimation of the mean, standard deviation, or 
the estimated probability density function characterizing the population. Because the 
population is defined (i.e. all components manufactured during a specified time period), 
the population has a unique mean, standard deviation (assuming the second moment 
exists), and PDF. The uncertainty in the mean, standard deviation, PDF, or any other 
statistical characterization of the population is epistemic, reducible if more data is 
available.  

7.2.2 Design criteria is a probability 
 
For cases where the design criteria is a probability, such as a requirement that there must 
be less than 1 in 10,000 chance that the component will fail due to manufacturing defects, 
then an important uncertainty is the uncertainty in estimating the failure probability from 
a limited number of samples. The uncertainty (epistemic) in estimating a percentile 
location in an aleatory distribution is often characterized by a tolerance interval (Hahn 
and Meeker, 1991). We may wish to know what the 90% confidence interval is 
(epistemic) that at least 99% of the population of a particular model (aleatory) of an 
automobile obtains an EPA gas mileage rating of 30 MPG.  
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Probabilistic risk assessments for high consequence accidents are used for environment 
assessment (EPA), for nuclear reactors (NRC), and for nuclear weapons (DOE/SNL). The 
design requirements often require that the Probability of Loss of Assured Safety 
(PLOAS) does not exceed a specified probability. Thus the QoI is a probability, and any 
estimate of this QoI will possess uncertainty. A common approach in these types of 
assessments is to estimate the PLOAS base on random variability in the system (i.e. 
aleatory), and to estimate the uncertainty in the true value for PLOAS as epistemic 
uncertainty due to lack of knowledge. In these applications, the epistemic uncertainty is 
usually also represented by probability distributions. This analysis process is often 
referred to as a probability (subjective) of frequency (i.e. frequency of failure due to 
random effects) and is the recommended approach if the design QoI is a probability. This 
approach requires a separation of these epistemic and aleatory uncertainties when using 
the model to predict uncertainty (Helton, 2011, Hofer, 1996, Pilch, et. al., 2011). 

7.2.3 Classification of reducible uncertainties 
 
Another case for which the distinction between aleatory and epistemic uncertainties are 
useful is when one wishes to characterize sources of uncertainty by type so that the 
overall uncertainty is reduced. Aleatory uncertainty is not reducible without changing 
underlying system so that it possesses less randomness (i.e. more rigorous manufacturing 
tolerances or a system redesign to be less sensitive to material variability). Epistemic 
uncertainty can be reduced by taking more samples, investing in instrumentation that has 
less bias in the measurements, re-calibrating data reduction equations, all of which does 
not require a redesign in the underlying system being measured.  Classifying the more 
significant sources of uncertainty in terms of aleatory or epistemic can be a step towards 
deciding what approach to use to reduce the uncertainty in the estimated performance of a 
design, or the uncertainty in a validation exercise.  

7.2.4 Less utility if interested in total uncertainty 
 
For case where the QoI is not a probability but a physical quantity (e.g. power, maximum 
temperature), the separation of uncertainty into epistemic and aleatory has less utility. 
Generally, one is interested in a best estimate of the QoI and the aggregated 
aleatory/epistemic uncertainty in this estimate.  
 
7.3 Type A or Type B 
 
The International Organization for Standardization on the Guide to the Expression of 
Uncertainty in Measurements (ISO GUM, 1995) and the ASME Code and Standard 
ASME PTC 19.1 (ASME, 2006a) provides guidance on the estimation of measurement 
uncertainty. These documents and the concepts behind them form the basis for the ASME 
Verification and Validation standard ASME V&V 20-2009 (ASME, 2009) and is the 
approach recommended here. While ISO GUM acknowledges epistemic and aleatory 
types of uncertainty, the guide focuses on the sources of information used to estimate 
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uncertainty. Specifically, the guide defines Type A and Type B uncertainty based on how 
the uncertainty is estimated.  
 
Type A corresponds to aleatory uncertainty characterized using repeated measurements. 
A characterization statistic of this uncertainty is the familiar standard deviation.  
 
Often, one does not have repeated measurements, and other approaches are used to 
estimate uncertainty. ISO GUM refers to this type of uncertainty as Type B. For example, 
the estimated uncertainty in measurements may be provided by the manufacturing 
specifications on the measurement device, from an error analysis on a data reduction 
(e.g., calibration) equation, or from expert opinion. Type B uncertainty can be either 
aleatory, epistemic, or both, depending on whether the particular source of uncertainty is 
random or represents lack of knowledge. In either case, the ISO GUM assumes that the 
Type B uncertainty can be represented by a probability distribution, and as such, the 
uncertainty can be characterized by a standard deviation. Note that, in the case of 
epistemic uncertainty, the probability distribution is a subjective probability, representing 
degree of belief.  Because this uncertainty is not directly estimated from samples from a 
population, ISO GUM generalizes ‘standard deviation’ to the phrase ‘standard 
uncertainty’. Standard uncertainty and standard deviation have the same probabilistic 
meaning, but standard uncertainty is a generalization of standard deviation to cases when 
a standard deviation may or may not be evaluated directly from repeated measurements 
or samples. The ASME Code and Standard ASME 20-2009 utilizes this terminology in 
their document, and this terminology is adopted here.  
 
7.4 Sources of Uncertainties Associated with Validation 
Exercises 
 
Today’s concept of model validation (ASME, 2009, Roach, 2009) emphasizes the need to 
account for uncertainty in comparing model predictions to experimental observations. 
This uncertainty contains contributions due to experimental as well as model prediction 
uncertainty. The uncertainties that are typically considered during a validation exercise 
are  
 
• Solution verification uncertainty for the application – uncertainty due to lack of finite 

element or finite difference spatial and temporal grid convergence. Uncertainty due to 
lack of stochastic convergence of particle-based methods, or lack of convergence of 
iterative equation solvers are also considered under this category 

• Computational model parameter uncertainty – uncertainty in the correct values of the 
model parameters for the experiment or application 

• Experimental data uncertainty  
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While other forms of uncertainty exist (such as code verification uncertainty3), the 
present document focuses on the uncertainties listed above. The following chapter 
addresses model prediction uncertainty in more detail. 
 

 

                                                 
3 Includes uncertainty characterization of detected code or algorithmic deficiencies for 
the intended application 
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8.0 MODEL PARAMETER UNCERTAINTIES: SCREENING 
ANALYSIS AND CHARACTERIZATION 

 
• A model parameter screening analysis identifies the model parameters whose 

uncertainty has significant impact on model prediction uncertainty. 
• The screening analysis allows one to down-select that model parameters for which the 

associated uncertainties should be well characterized 
• The resulting uncertainties will be used as input uncertainties for the computational 

model to estimate the corresponding uncertainties in the model predictions 
 

Model validation compares model predictions to experimental observations, and accounts 
for uncertainty in these comparison. This requires that the uncertainty in model 
predictions due to uncertainty in the model parameters be analyzed.  
 
Model parameters (as opposed to algorithmic parameters) are parameters that are utilized 
in the computational model to represent a particular application. Examples include the 
parameters used in constitutive equations for the materials, and parameters that appear in 
boundary or loading conditions (e.g. internal energy sources, external loads) to represent 
the environment.  
 
Computational models can utilize hundreds of parameters, many of which have some 
level of uncertainty. The uncertainty in many of these parameters may have little impact 
on a prediction for a particular application. The characterization of model parameter 
uncertainty generally requires significant effort, and the propagation of this uncertainty 
though a model can be computationally expensive. As a result, the identification of a 
subset of parameters for which the uncertainty has a significant impact on a 
computational prediction is an important step in performing an uncertainty analysis. This 
chapter overviews methodology to perform such a screening analysis, as well as briefly 
discusses methods to characterize the uncertainty of the resulting down-selected 
parameters. 
 
8.1 Initial Screening 
 
The initial screening to identify this subset of parameters is generally done through the 
expert judgment of the analyst or a group of analyst, code developers, and 
experimentalist. The purpose of this initial screening is to identify those parameters that 
the team has high confidence that the uncertainty does not significantly impact the model 
predictions. The starting point for this initial screening analysis is to consider those 
parameters associated with the phenomena identified as important (e.g. the parameters 
associated with radiant heat transfer) during the development of the PIRT. Those 
parameters that are identified as important are then analyzed through a more formal 
sensitivity analysis as discussed in the following sections.  
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8.2 Quantitative Screening Analysis 
 
The next step is to perform a formalized screening analysis on the identified parameters 
(Saltelli et al. 2000). The approaches discussed here fall into two broad groups; gradient-
based (first order sensitivity analysis) and sampling based (such as experimental design 
and LHS sampling). Both approaches require nominal values for the parameters and 
some measure of uncertainty (e.g. standard deviation, interval width) associated with the 
uncertain parameters. The first order gradient-based approaches can require fewer 
computational model evaluations, but cannot capture the effect of nonlinear dependence 
of the QoI on model parameters.  Experimental design approaches can capture some of 
the nonlinear behavior but generally require more computational model evaluations.  
 

8.2.1 Gradient-Based Screening Analysis 
 
Gradient-based techniques utilize estimates of the gradients of the relevant QoI with 
respect to the uncertain parameters to characterize the impact of model parameter 
uncertainty on a prediction. Consider the following model 
 
 𝑆 = 𝑓(𝐱,𝛂) (8.1) 
 
where x is the vector of independent variables and α is a vector of the model parameters 
of interest. Generally, the evaluation of f requires the solution of PDEs (or ODEs). A 
change in S due to a change in the ith parameter αi to first order is  
 
 Δα𝑖𝑆 ≈

𝜕𝜕(𝐱,𝛂)
𝜕𝛼𝑖

 Δα𝑖,    𝑖 = 1,2, … ,𝑛 (8.2) 
 
where n is the number of parameters under consideration. The change in S due to the 
change in the vector α can be approximated to first order by 
 
 Δ𝑆 ≈ 𝛁𝛂𝑓(𝐱,𝛂) 𝚫𝛂 (8.3) 
 
where is 𝛁𝛂 is the gradient with respect to the parameter vector α. Given an estimate of 
the gradient of the model f to the parameter or vector of parameters, and a characteristic 
representation of the uncertainty (standard deviation, range, etc.) of the parameters, one 
estimates the uncertainty in S to first order. For example, given uncertainty characterized 
by the standard deviation, the corresponding change in y is 
 
 Δα𝑖𝑆 ≈

𝜕𝜕(𝐱,𝛂)
𝜕𝛼𝑖

 σα𝑖 ,    𝑖 = 1,2, … ,𝑛 (8.4) 
 
The changes relative to each standard deviation can then be used to rank the importance 
of the parameter uncertainty to the prediction of S. 
 
Techniques that can be used to estimate the gradients include the following. 
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• Gradient estimation using finite differences   
o Requires n+1 (forward or backward finite differences) or 2n+1 (central finite 

differences) model evaluations at n+1 or 2n+1 sets of the model parameters 
o Represents an approximate gradient over a neighborhood of the nominal 

values for the parameters, with the neighborhood size reflected by the size of 
the model parameter differences used to estimate the gradients 

• Gradient estimation using sensitivity equations  
o These equations are developed by taking the derivatives of the dependent 

variables in their governing PDE’s, and the boundary and initial conditions, 
with respect to each model parameter (Beck and Arnold, 1977, Saltelli, et. al., 
2008). 

o Solve the resulting sensitivity equations (also PDE’s) to evaluate the gradient 
of f relative to the relative model parameters  

o Useful when the code contains the ability to evaluate and solve the sensitivity 
equations  

• Gradient estimation using sampling  
o Fit a hyperplane to the f that results from n+1 or more Monte Carlo samples 

(each sample corresponds to a function evaluation) over a neighborhood of α 
of the size corresponding to the uncertainty in the parameters. For example, 
Latin Hypercube Sampling (LHS) can be used where the range of each 
parameter represents an interval of possible parameter values, or normally 
distributed LHS sampling can be used where the range of the parameter values 
are characterized by the means and standard deviations or covariance of the 
parameter uncertainty. 

o Represents an effective gradient over a neighborhood of the nominal values 
for the parameters  

o With a sufficient number of samples, can provide the most robust first order 
sensitivity analysis results for a neighborhood 

8.2.2 Experimental Design Screening Analysis 
 
Statistical Experimental Design (ED) (Wu and Hamada, 2000; Saltelli et. al., 2000; 
Cacuci, 2003) techniques have the advantage, relative to the gradient-based techniques 
summarized previously, that they can capture the impact of nonlinear interactions with 
and between the various model parameters. Experimental design techniques are 
constructed to require a minimum number of experimental data points or computational 
model evaluations to estimate a particular order of sensitivity. For example, the 
estimation of the full quadratic sensitivity of f relative to n model parameters requires a 
minimum of (n+2)(n+1)/2 model evaluations to estimate the (n+2)(n+1)/2 coefficients 
that appear in the n dimensional quadratic surface. For n=7, the number of model 
evaluations is 36. Experimental design methodology defines the series of design levels 
(i.e., the set of point values of the parameter vector) at which the experiment is performed 
or the computational model is evaluated. These levels for a 3 level design are denoted -1, 
0, 1, with -1 denoted the minimum value of the parameter, 0 the mean value, and 1 the 
maximum value. For the case of parameter ranges characterized by the uncertainty 
distributions, one can use multiples of standard deviations to represent the minimum, 
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mean, and maximum levels (e.g. -1, 0, 1 can correspond to the mean value of a parameter 
minus two standard deviations, the mean value, and the mean value plus two standard 
deviations, respectively). Consider a Box-Behnken (Box and Behnken, 1960) design for a 
model in 3 parameters. This design is one of the oldest and is still heavily used to 
estimate a quadratic response surface. The resulting design levels are shown in Table 8.1. 
 

Table 8.1 Box-Behnken design levels for a 3 parameter design 
 

Design Levels 
X X2 X3 
-1 -1 0 
-1 1 0 
1 -1 0 
1 1 0 
-1 0 -1 
-1 0 1 
1 0 -1 
1 0 1 
0 -1 -1 
0 -1 1 
0 1 -1 
0 1 1 
0 0 0 
0 0 0 
0 0 0 

 
Note that the design requires the use of the model evaluation at (0, 0, 0) three times. This 
reuse provides the correct weighting to the center points relative to the other points to 
insure a better estimate of the quadratic response over the design space. Note also that 
there are no design levels at the corners of the design (e.g., 1, 1, 1). Other designs that 
include these points can better represent interaction effects at the corners of the design 
space. The resulting values for the function evaluations of f at the design points are then 
used to evaluate the corresponding quadratic response surface. This response surface is 
then used to investigate which terms in the quadratic have a significant impact on the 
quadratic approximation for f over the parameter space. One may find, for example, that a 
first order term in a particular parameter is not important, but that a term corresponding to 
a product of this parameter and another is important (i.e., results in significant changes in 
the QoI over the space). In this case, both parameters should be retained for the model 
when used in an uncertainty analysis, even though a first order sensitivity analysis 
indicates that the first parameter uncertainty is not important. Other experimental designs 
include space-filling designs optimized to fill high dimensional spaces with a given 
number of model evaluations. For example, Latin Hypercube designs are approximately 
space filling designs that are well accepted. Specific experimental designs are also 
available (Saltelli, 2008) to optimize the representation of a non-linear process by a 
Gaussian process model. Many statistical software packages provide the design points for 
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the various types of designs, as well as provide post diagnostics to characterize and rank 
order the model’s dependence on the parameters. 

8.2.3 Sensitivity Analysis using Variance-Based Techniques 
 
The primary advantage of variance-based techniques (Saltelli, et. al, 2000) over those 
discussed above is that they characterize the sensitivity of a computational model 
response to the model parameters, without requiring assumed forms of the model (e.g. 
linear, quadratic) over the sampled neighborhood. In contrast, the gradient-based 
technique discussed above captures the first order (i.e., linear) sensitivity to the 
parameters. Box-Behnken experimental design techniques capture quadratic behavior. 
The variance-based techniques, which utilize samples (i.e., LHS sampling), allow for the 
characterization of more complex non-linear behavior if the model response can be 
practically sampled a sufficient number of times. Examples of the application of 
variance-based sensitivity analysis are provided in McKay (1996), and Saltelli and 
Tarantola (2002).  
 
8.3 Characterization of Parametric Uncertainty 
 
Once the screening analysis is complete, the uncertainties of the down selected model 
parameters are statistically characterized for use in the Uncertainty Quantification (UQ) 
analysis. Uncertainty quantification is the propagation of model parameter uncertainty 
through a model to estimate the associated prediction uncertainty. This propagation can 
be approximately performed using results from the sensitivity analysis discussed 
previously, or can be done though sampling techniques. Both techniques are discussed in 
the following chapter.   
 
Sampling techniques require the specification of the full probability distribution functions 
(PDF) characterizing parameter uncertainty, whereas the sensitivity analysis approach 
can be accomplished with knowledge of only the means and covariance matrix for the 
vector of down selected uncertain parameters. Sampling techniques can be more robust 
for models that are highly non-linear over the parameter range associated with the 
uncertainty in the parameters. For carefully controlled validation experiments, the 
uncertainty in these parameters is often sufficiently small that the linearized sensitivity 
analysis approach provides useful results. Generally, evaluating the uncertainty in the 
values for these parameters that are inferred from experimental data are the responsibility 
of the experimentalist or analyst who estimated these parameters from the data (e.g. 
material characterization experiments, inflow characterization measurements). The best 
approach to characterize parameter uncertainty depends on how much data is available, 
and whether prior knowledge is available that can be characterized through prior 
probability. A graded approach is suggested for the characterization of uncertainty as 
summarized below. 
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Physical data with no prior knowledge 
 
• Base approach: Use standard statistical techniques to estimate parameters in 

parametric distributions (mean and standard deviation) 
• Improvement: Use standard statistical techniques to estimate the parameters, the 

uncertainty in these parameters, and the goodness of fit of the distribution to the data. 
  

Physical data with prior knowledge 
 
• Use Bayesian estimation to estimate plausibility distributions for these parameters. 

Use carefully selected priors based on the prior knowledge of the parameters of 
interest.  
 

No useful physical data 
 
• Base case: Use expert opinion to characterize uncertainty.   
• Improvement 1: Use improved expert opinion solicitation methodology (Mayer and 

Booker, 1991, O’Hagan et al., 2006) and associated uncertainty characterization.  
 

8.4 Random Fields 
 
In the previous discussion, the focus was on random variables rather than random fields. 
Typical random fields in engineering are those that are dependent on space. For example, 
a thermal property may vary continuously but randomly with position over a solid. 
Polynomial Chaos Expansions (PCE) (Wiener, 1938; Xiu, 2010) can be used to 
characterize such random fields and have the advantage of being more computationally 
efficient than Monte Carlo sampling techniques for many applications.  This approach 
expands the physical space to a product space that includes stochastic dimensions 
associated with each term in a truncated PCE expansion. Orthogonal polynomials (the 
optimum choice of which depends on the type of distribution used for the random 
variables/fields) are used, with the coefficients as a function of physical space (or time). 
The PCE approaches have the advantage that they can represent such spatial/temporal 
variability with a minimal number of basis functions due to their convergence properties 
(exponential convergence with the appropriate orthogonal polynomials). 
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9.0 COMPUTATIONAL MODEL UNCERTAINTY 
 

• The characterization of uncertainty in model predictions and measurements is an 
important step in model validation and is used to characterize the uncertainty in the 
model error. 

• Methodology for estimating the effect of model parameter uncertainty and grid 
convergence uncertainty is well established and should be utilized. 

• The most common approach to estimate the numerical uncertainty due to lack of grid 
convergence is the Grid Convergence Index approach based on Richardson 
extrapolation. This approach is discussed here. 

• Two of the most common methods used to characterize model parameter uncertainty 
are a first order sensitivity analysis approach and a sampling approach. These 
approaches are discussed here. 

 
9.1 Background 
 
The focus of the present chapter is to summarize methodology to evaluate the effect of 
model parameter uncertainty and numerical uncertainty on model prediction uncertainty. 
The following nomenclature is used:  
 

S  Output of a model simulation 
unum  Standard uncertainty in S due to solution verification (i.e., numerical) 

uncertainty 
uinput  Standard uncertainty in S due to model parameter uncertainty 
unum+input  Standard uncertainty in S due to both model solution verification 

uncertainty and parameter uncertainty 
 
Here, the uncertainties unum and uinput represent standard uncertainty in the desired 
simulation output due to solution verification uncertainty (lack of spatial and temporal 
grid, equation solver, and stochastic convergence – also referred to as numerical 
uncertainty) and standard uncertainty due to model parameter uncertainty (i.e., input 
parameter uncertainty). Following ISO GUM (1995), PTC 19.2-2005 (ASME, 2006a) 
and V&V 20-2009 (ASME, 2009), standard uncertainty is the uncertainty in a single 
measurement or model prediction expressed as a standard deviation. For the case of 
repeated data, standard uncertainty for a single measurement can be estimated directly 
from the samples of data using the normal procedures for estimating the standard 
deviation. Standard uncertainty can also be estimated or defined from sources external to 
the measurements, such as from calibrated measurement standards, certified reference 
materials, data obtained from handbooks, or scientific judgment (ISO GUM, 1995). 
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9.2 Numerical Uncertainty (grid convergence uncertainty) 
 
Solution verification addresses the uncertainties associated with lack of convergence for 
iterative equation solvers; lack of grid convergence for finite element, finite volume, 
finite difference grids (including temporal grids); and stochastic convergence in 
estimating probability density functions or their properties (e.g., moments). For many 
applications, the choice of the methodology to address these uncertainties represents an 
open area of research and requires judgment from the analyst.  
 
The focus of the present discussion is on spatial grid convergence. As additional 
techniques evolve, the inclusion of other forms of solution verification uncertainty (i.e. 
geometric fidelity uncertainty, grid convergence when utilizing sub-domain or sub-grid 
models; convergence of models that are heavily influenced by aleatory processes, such as 
crack initiation in brittle materials, crush of heterogeneous materials, weld failure, etc.) 
can be considered.   
 
There are several approaches to evaluating the uncertainty associated with lack of grid 
convergence. An extensive discussion of these approaches is provided in Part III of 
Oberkampf and Roy (2010). The methodology presented here (Grid Convergence Index) 
is the most widely used methodology and is based on the concepts underlying Richardson 
extrapolation (Richardson, 1911). More recently, Rider has developed methodology 
(Rider and Kamm, 2012, Rider 2013) that is based on the regression of error equations to 
data obtained from the computational solutions on multiple grids using multiple 
regression norms and regression functions. This new methodology has been applied to 
complex applications and promises to provide more robust estimation of solution error. 

9.2.1 Grid Convergence Index4 
 
The Grid Convergence Index (GCI) represents the most commonly used technique to 
characterize grid convergence error in the computational fluid dynamics field since the 
1990s. The GCI method utilizes solutions for the QoI on multiple grids and provides an 
estimate of the amount of corresponding discretization error in the finest grid solution 
[Roache, 1994 and 1998].  Celik et. al. (2008) recommended the method for Journal of 
Fluids Engineering publications. The method is incorporated in the ASME standard 
V&V20 – 2009 (ASME, 2009). A least squares version of the method was first presented 
by Eça and Hoekstra (2002) (see also Pelletier and Roache 2006, Eça, Hoekstra and 
Roache 2005, Eça, Hoekstra, Hey and Pelletier 2007, Eça and Hoekstra 2009) and 
provides an improved estimate of grid convergence error based on the application under 
consideration.  
 
The GCI method can be applied in a post-processing step utilizing solutions for the QoI 
on multiple grids and can be applied to any grid based partial differential equation solver 
(finite difference/element/volume). However, if interpolation is required to obtain 
solutions of the QoI at the same spatial location for different grids, one should use an 

                                                 
4 Much of this section was taken directly and without quotes from Hills et. al. (2015). 
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interpolating method that is equal to or higher order than the underlying theoretical order 
of the elements in the grid.  
 
The GCI method is based on Richardson extrapolation and utilizes solutions for the QoI 
on multiple grids, all of which should be in the asymptotic region of grid convergence. 
The characteristic lengths of the grid cell sizes should vary by at least 30% between one 
grid and the next finest grid. As a result, it is sometimes difficult obtain solutions on 3 or 
more grids for multi-physics applications. Also, formal order of convergence can degrade 
in local regions due to highly non-linear effects and due to algorithmic techniques, such 
as those used for shock capturing. Convergence rates less than the expected formal order 
can also indicate a software defect (bug), inconsistent geometry between refinements, 
non-systematic grid refinement, or insufficient convergence of the iterative equation 
solvers.  Convergence rates larger than the expected formal order of the algorithm should 
be investigated as these generally indicate that the solution is outside the asymptotic 
region of convergence. 

9.2.2 The Basic GCI method 
 
ASME V&V 20-2009 (ASME, 2009) provides a step-by-step process to estimate 
numerical uncertainty unum based on the GCI method.  This process is summarized below. 
 
Evaluate representative cell size. In three dimensions, this representative size can be 
estimated from 
 ℎ =  [Δ𝑥max Δ𝑦max Δ𝑧max]1/3 (9.1) 
for structured grids, or 

 ℎ =  �1
𝑁
∑ Δ𝑉𝑖𝑁
𝑖=1 �

1/3
 (9.2) 

for unstructured grids. Note that in the second case, h is based on the cube root of the 
average volume of the cells across the grid (N total cells, with Δ𝑉𝑖 equal to the volume of 
cell i).  
Perform the computations of the QoI, S, on three grids with a refinement ratio r = hcourse / 
hfine greater than 1.3. Denote the three grids representative cell sizes by h1, h2, h3 with 
h1<h2<h3, and r21 = h2/ h1, r32 = h3/ h2. The order of convergence, p, is estimated from 
 

 𝑝 =
�𝑙𝑙�𝑆3−𝑆2𝑆3−𝑆2

��+𝑞(𝑝)

ln 𝑟21
  (9.3) 

where 

 𝑞(𝑝) = 𝑙𝑛 �𝑟21
𝑝 −𝛾
𝑟32
𝑝 −𝛾

� (9.4) 

 

 𝛾 = sign �𝑆3−𝑆2
𝑆3−𝑆2

� (9.5) 
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The estimated order of convergence can now be used to estimate the extrapolated 
(corrected) value for the QoI, 𝑆. 

 𝑆𝑒𝑒𝑒𝑟𝑒𝑝 = 𝑟21
𝑝 𝑆1−𝑆2
𝑟21
𝑝 −1

 (9.6) 

 
Note that 9.6 gives the extrapolated or estimated corrected value for 𝑆 for a converged 
grid based on Richardson extrapolation. This correction is an approximation because one 
is ignoring the higher order terms in the Taylor’s series expansion that lead to Richardson 
extrapolation. To address this issue, the GFI method incorporates a safety factor as 
follows.  
 
 GCI𝜕𝑖𝑙𝑒21 = 𝐹𝑠 �

𝑆1−𝑆2
𝑆n

� 1
𝑟21
𝑝 −1

 (9.7) 

 
where the normalization quantity 𝑆n typically is take to be 𝑆n =  𝑆1.  GCI is a 
characterization of normalized grid convergence error. The normalization value 𝑆n can be 
replaced with values other than the local values, especially if 𝑆1= 0 (see ASME, 2009).  
Fs is a safety factor who’s value is based on empirical studies of over 500 CFD cases. A 
safety factor Fs = 1.25 provides a GCI𝜕𝑖𝑙𝑒21  that bounds 95% of the actual normalized 
errors (when compared to solutions on fully converged grids).  For unstructured grids the 
more conservative value Fs = 3 is recommended (ASME, 2009).  
 
Here we are interested in the standard uncertainty, which does not correspond to the 95% 
confidence level. To obtain the standard uncertainty from (9.10), V&V 20-2009 (ASME, 
2009) proposed that  
 𝑢𝑙𝑛𝑛 =  |𝑆𝑛|

1.15
GCI𝜕𝑖𝑙𝑒21  (9.8) 

 
Note that 𝑢𝑙𝑛𝑛 is non-normalized standard error.  This represents a conservative estimate 
of the standard uncertainty due to uncertainty in the actual distribution of the normalized 
errors that lead to the GCI. Note that if these errors were Gaussian distributed, 1.15 
would be replaced with 2. Given the estimate for the standard uncertainty due to lack of 
grid convergence, we can now move on to the model prediction uncertainty due to 
parameter uncertainty.  
 
9.3 Model Parameter Uncertainty 
 
Section 8.3 summarized the methods used to characterize model parameter uncertainty. 
In the following sections, the propagation of these uncertainties through the model to the 
predicted QoI, S, (including the validation QoI) to obtain the corresponding prediction 
uncertainty uinput is discussed. Two approaches will be summarized below. The first is 
based on the sensitivity analysis performed in the previous chapter. The second is based 
on sampling.  
 
The sensitivity analysis approach discussed here is a linear analysis and is suitable when 
the model for the QoI is approximately linear over the uncertainty range of the model 
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parameters. Because validation experiments are often designed to minimize uncertainty 
in these parameters, non-linear models can often be well approximated as linear over 
these limited ranges. A second issue associated with the first order sensitivity approach is 
that it can only provide estimates of the covariance matrix for a vector of QoIs and not 
the full PDFs for the QoIs. 
 
In contrast, the sampling approach allows one to characterize the non-linear response of 
the QoI to the uncertain model parameters. Parameter value sets are sampled from the 
parameter PDFs, these value sets used to calculated the corresponding QoIs. As the 
number of sample sets increases, the ability to estimate the PDFs of the resulting QoIs 
increases. However, one must be able to use a very large number of samples to resolve 
output distributions for the QoI. The more important the tail of these distributions to the 
application, the more samples must be obtained. The use of model surrogates or response 
surfaces will be discussed as a technique that will allow one to reduce the number of 
required model evaluations in a later section. 
 

9.3.1 Gradient-Based Analysis for uinput 
 
Gradient-based analysis can be used to estimate a covariance matrix characterizing the 
uncertainty for multivariate simulation output given the covariance matrix of the 
uncertainty for the model input parameters. While the covariance alone cannot define a 
distribution, the covariance can be used to characterize the widths of distributions at 
various prediction points. Gradients can be estimated using finite differences using the 
code as a black box (see previous discussion on gradient based parameter screening 
analysis and Eqs. 8.1 – 8.4), or one can develop and solve systems of partial differential 
equations governing the sensitivities of the desired system response variables relative to 
the uncertain parameters, or one can develop and solve adjoint governing equations or 
adjoint matrix equations associated with the underlying finite difference or finite element 
method. The latter two methods are not black box in the sense that they are embedded in 
the code.  
 
The two primary disadvantages of gradient-based analysis are  
• The analysis represents the behavior of the simulation model about some nominal 

location (usually the mean) as linear in the uncertain parameters (i.e. a first order 
sensitivity analysis). 

• The evaluation of the covariance of the simulation model outputs assumes that such a 
covariance exists. There are heavy-tailed distributions, often associated with rare 
events, for which these second moments of the distributions do not exist. 

• The analysis provides only a mean and covariance of the simulation output. However, 
if the uncertainty in the simulation output is normally distributed, the mean and 
covariance fully characterizes the uncertainty distribution in the model output due to 
model parameter uncertainty.  

One can expect approximately normally distributed computational simulation results if 
• The model is approximately linear in those uncertainty parameters that dominate the 

uncertainty over the range of the uncertainty, and  
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• The uncertainties in these dominant model input parameters are normally distributed.  
Even if the above conditions are not true, the covariance is often fairly well approximated 
by the sensitivity analysis. In contrast, the tails of the output distributions for the QoIs are 
much more sensitive to differences in the model parameter PDF’s and to the nonlinearity 
of the simulation model. As a result, the applicability of the sensitivity method for 
estimating the PDF tail behavior is limited to linear models with normally distributed 
model input parameters. 
 
Once the gradients with respect to the important uncertainty parameters are estimated, the 
change in a vector of model simulation outputs due to a change in a vector of uncertain 
input parameters can be approximated to first order as (see Eq. (8.3)).  
 
 Δ𝐒 = 𝛁𝛂𝐟(𝐱,𝛂) 𝚫𝛂 (9.9) 
 
The model arguments (𝐱,𝛂) represent those arguments whose values are know with 
certainty (x – typically are independent variables), and those known with uncertainty (𝛂). 
Note that if an independent variable has uncertainty (for example the time of a physical 
measurement), then this variable should be included in 𝛂 rather than in x. S represents a 
vector of model predictions. The ith row of 𝛁𝛂𝐟(𝐱,𝛂) corresponds to the sensitivity of Si 
to the vector of parameters 𝛂. Post multiplying by the transpose of Δ𝐒 gives 
 
 Δ𝐒Δ𝐒T = 𝛁𝛂𝐟 𝚫𝛂𝚫𝛂T𝛁𝛂𝐟T (9.10) 
 
The expected value of Eq. (9.10) is the covariance of S and gives the desired result for 
uncertainty. 
 cov(𝐒) = 𝛁𝛂𝐟 cov(𝛂)𝛁𝛂𝐟T (9.11) 
 
The diagonal elements in the cov(S) contain the squares of the first order approximations 
to uinput for the simulation output due to the parameter uncertainty.  
 
 𝑢𝑖𝑙𝑝𝑛𝑒𝑖 = �[cov(𝐒)]𝑖,𝑖 (9.12) 
 

9.3.2 Sample-Based Analysis for uinput 
 
When the model input parameters are not normally distributed, or when the model 
response is nonlinear about the nominal values for the parameters over the range of the 
uncertainty in the parameters, gradient based methods will not provide accurate estimates 
of the prediction uncertainty in the tails of the PDF. Sampling based methods represent a 
‘gold standard’ for application to problems possessing one or both of the above features. 
Unfortunately, sampling methods require many more function evaluations. While simple 
Monte Carlo Sampling can be used, stratified sampling or importance sampling, such as 
Latin Hypercube Sampling (LHS, Fishman, 1996), is often used to reduce the number of 
model evaluations. LHS has the advantage that it can provide estimates of low order 
statistics (mean, standard deviation) with fewer samples, but provides less advantage 
when used to estimate tail statistics (i.e. the location of 0.999 cumulative probability). 
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Most statistical packages provide LHS samples for the cases for which all of the 
parameters are either uniformly distributed or normally distributed.  
 
For the case of combined aleatory/epistemic uncertainties, the parameter uncertainties 
can be propagated through the model as follows. 
 
• Sample a realization of the parameters from the PDFs that have been chosen to 

represent their uncertainty.  
• Evaluate the simulation output, S, at the corresponding parameter values. 
• Repeat the previous steps until a sufficient number of samples have been obtained to 

characterize the PDF for the uncertainty in S.  
 
The covariance matrix for S can be estimated from the sampled simulation results as 
follows: 
 
 cov(𝐒) = cov(𝑆𝑖,𝑆𝑘) = 1

𝑙𝑟−1
∑ (𝑙𝑟
𝑗 𝑆𝑖,𝑗-𝑆𝑖,mean) �𝑆𝑘,𝑗-𝑆𝑘,mean�;   𝑖,𝑘 = 1 …𝑚 (9.13) 

 
where m is the number of elements or predicted measurements in the vector S and nr is 
the number of sample sets used for the evaluation. The resulting uinput are given by the 
square-root of the diagonal elements of cov(S).   
 
 𝑢𝑖𝑙𝑝𝑛𝑒𝑖 = �[cov(𝐒)]𝑖,𝑖 (9.14) 

9.3.3 Response Surfaces 
 
The number of samples required to resolve characteristics of PDFs depends on the 
statistical quantities of interest for the prediction uncertainty. For example, means can be 
estimated with fewer samples, variances/covariance requires more samples, and the 
estimation of the cumulative distributions in the tails of distributions requires a very large 
number of samples. Because model simulations of are often very computationally 
intensive, the number of simulations that can be performed is limited. As a result, 
response surfaces are often used as surrogates for the computational models for sampling 
based uncertainty quantification (UQ). Response surfaces, when used for UQ, are fits of 
simplified model surrogates to the sampled computational model outputs as a function of 
the uncertain model parameters. The ability to estimate an accurate response surface 
depends on the number of points sampled and the choice of the response surface. Ideally, 
an analyst decides the number of computational simulations achievable, choose a 
sampling scheme such as LHS or through a design of experiment, executes a 
computational simulation at each of these sampled points, and estimates the coefficients 
in the mathematical expressions for the response surface given the computational results. 
The response surface is then used as a surrogate for the model over this space for UQ 
sampling. The goal of using a response surface is that, by replacing the computational 
simulation model with a response surface, one can generate many more samples from the 
surrogate to more accurately quantify the uncertainties associated with uinput. Of course, 
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the accuracy of the constructed response surface in representing the behavior of the 
original computational model can be an issue. 
 
The most appropriate response surface techniques are those that not only estimate a 
response surface, but also characterize the uncertainty associated with the residuals 
between the computational model values and the response surface values. These 
approaches allow this uncertainty to be aggregated into the evaluation of uinput. Response 
surfaces based on Gaussian Process (GP) models are examples of such approaches (see 
Higdon et. al, 2008, Williams, 2002).  
 
Because an analyst is generally interested in using the response surface to sample only 
over the range of uncertainty of the model parameters for a specific application, or over 
the uncertainty range of the model parameters for the computational model of a 
validation experiment, the ability to represent model behavior over this range can be 
better than the ability to represent model behavior over the total parameter space. In 
addition, one is often interested modeling measurements at specific measurement 
locations and times. One can develop separate response surfaces for each location and 
time, which reduces the complexity and increases the accuracy of the resulting 
surrogates.  
 
Various methods for response surface estimation have been developed; including 
adaptive fits using locally and globally supported functions (Multivariate Adaptive 
Regression Splines (MARS), Friedman, 1991, DAKOTA, Adams et. al., 2010).  
 
9.4 Combined Uncertainty unum+input 
 
The methodology to combine unum from Section 9.2 and the uinput from Section 9.3 to 
obtain a total uncertainty is presented in V&V 20-2009 (ASME, 2009). Note that uinput 
may contain both aleatory and epistemic uncertainty as some of the model parameters 
may represent random processes and some of the model parameters may possess single 
values whose values are uncertain due to lack of knowledge.  unum is typically epistemic 
as there is a fixed grid convergence error associated with a predicted QoI, S. However, 
unum may also contain aleatory uncertainty if the grid convergence error is dependent on 
aleatory model input parameters. Assuming independence between the source of errors in 
affecting grid convergence and the model parameter uncertainty, and treating epistemic 
uncertainty as probabilistic (i.e. as is treated V&V 20-2009 (ASME 2009) and the ISO 
GUM (1995), the total standard uncertainty in the model prediction is 
 

 𝑢𝑖𝑙𝑝𝑛𝑒+𝑙𝑛𝑛 = �𝑢𝑖𝑙𝑝𝑛𝑒2 + 𝑢𝑙𝑛𝑛2  (9.15) 

 
Given a model prediction for the QoI, S, the estimated uncertainty for this prediction 
given by Eq. (9.15), and a corresponding measurement D and its uncertainty uD; one can 
evaluate a validation metric. This is the topic of the next chapter.  
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PART 4: MODEL VALIDATION ASSESSMENT 
 
 
 



 

 74 



 

 75 

10.0 COMPUTATIONAL MODEL VALIDATION 
 
• Evaluate the measure of agreement between the experimental results and the 

associated model prediction of the experimental results 
• Evaluate the uncertainty in the resulting value for this measure due to measurement, 

model parameter, and numerical uncertainty.  
• Interpret and communicate the results 
 
AIAA (1998) and ASME (2006b) define model validation as “the process of determining 
the degree to which a model is an accurate representation of the real world from the 
perspective of the intended use of the model.” Model validation is based on the direct 
comparison between experimental data to computational predictions of the data, relative 
to the uncertainty in the validation exercise (ASME, 2006b). The uncertainty in the 
validation exercise is based on the uncertainty in the experimental data and the 
uncertainty in the model predictions.  
 
The focus of the present chapter is on the comparison of experimental data to 
computational simulation considering data uncertainty and the prediction uncertainties 
discussed in Chapter 9. 
 
10.1 Estimating Model Error from Validation Data 
 
The ISO GUM (ISO, 1995) and the ASME standard PTC 19.1 (ASME 2006a) define 
methodology to characterize experimental uncertainty, including the evaluation of 
uncertainty due to data reduction models. The ISO GUM makes the distinction between 
standard deviation and standard uncertainty. Standard uncertainty is a generalization of 
standard deviation to cases where an estimate of its value may be from repeated 
measurements (i.e. standard deviation); or from sources external to the measurements, 
such as calibrated measurement standards, certified reference materials, data obtained 
from handbooks, or scientific judgment (ISO GUM, 1995). This standard considers the 
case for which epistemic uncertainty can be characterized by a probability distribution. 
As a result, this standard evaluates the standard uncertainty for the sum of two 
independent uncertain variables (epistemic and/or aleatory) as equal to the square root of 
the sums of squares of the standard uncertainties of each variable.  
 
V&V 20-2009 (ASME, 2009) extends PTC 19.1 to computational model validation and 
applies the same concepts to the uncertainty in simulation output, due to simulation 
model parameter uncertainty as discussed in Chapter 8, uinput; numerical grid convergence 
uncertainty as discussed in Chapter 8, unum; and data uncertainty, uD. Data uncertainty 
corresponds to experimental data acquisition uncertainty associated with diagnostic error. 
If the errors associated with these uncertainties are independent, then the standard 
uncertainty in a validation exercise is5  
                                                 
5 V&V 20-2009 (ASME, 2009) present’s sensitivity based and sampling based 
methodology to address correlation between sources of error in the experimental data and 
the model parameters or input conditions. 
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 𝑢𝑣𝑒𝑙 = �𝑢𝐷2 + 𝑢𝑖𝑙𝑝𝑛𝑒2 + 𝑢𝑙𝑛𝑛2  (10.1) 

 
ASME (2009) does not specify rigorous criteria to declare a computational model as 
valid but rather estimates computational model error, δmodel, by the observed difference, 
E, between computational simulation output and physical data. The uncertainty in the 
estimate of δmodel is characterized through uval. For example, see Figure 10.1 for a 
characterization of the uncertainty in δmodel through the interval 
 
 [𝐸 − 𝑢𝑣𝑒𝑙 ,𝐸 + 𝑢𝑣𝑒𝑙] (10.2) 
where 
 𝐸 = 𝑆 − 𝐷 (10.3) 
 
The analyst/customer/decision maker team must use judgment as to whether the 
estimated computational model error, E, and the estimate for uncertainty in this model 
error, uval, are significant relative to the intended application of the model.  
 
V&V 20-2009 (ASME, 2009) also presents a sampling approach for evaluating the model 
prediction bias and the uncertainty in the bias. This process is summarized below: 
 
• Develop PDF’s representing the data uncertainty, the grid convergence uncertainty 

(one typically assumes a normal distribution with zero mean and standard deviation 
equal to uinput using the GCI method discussed previously), and the uncertainty in S 
due to parameter uncertainty.  

• Sample a data value, D, from the data distribution; a grid convergence error, G, from 
the grid convergence distribution; and a parameter set from the parameter 
distributions.  

• Evaluate S using the sampled parameter set, and evaluate the resulting sampled error 
E as follows: 

  𝐸 = 𝑆 + 𝐺 − 𝐷 (10.4) 
• Repeat the sampling and the evaluation of Eq. (10.4) multiple times to obtain a 

population of possible E.  
• Utilize this population of E to estimate the mean model error (i.e. mean E) and other 

statistical characteristics of the population, such as standard uncertainty (i.e. 
calculated as a standard deviation), quartiles, etc.  
 

10.2 Interpretation 
 
The estimate of the bias error, E, and the standard uncertainty in this error, uval, provides 
a basis for interpreting model validity. Note that several interpretations can be taken 
depending on model needs. 
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10.2.1 Scientific Validation 
 
In science, one is often interested in asking whether the model predictions are consistent 
with the experimental observations, given the uncertainty present in the validation 
exercise. Or in statistical terms, we can ask what the statistical significance is of a 
difference. If one has a sufficient number of samples of the differences, then one can 
evaluate what percentages of the sampled differences are larger in magnitude than the 
observed difference. This percentage is the significance of the results. For example, if the 
sampled differences are normally distributed, and the observed difference is E = 2* uval, 
then the two-sided significance of this difference is 5%. The interpretation of this 
significance is that one would expect that 5% of the differences would be larger in 
magnitude for this level of uncertainty, given that the model is valid. Note that this 
statement does not say that this model is valid, only that if it is, then only 5% of the 
differences would be larger.  
 
An issue that is often raised with this approach is that the more uncertainty there is in the 
validation exercise, the more likely that an observed difference is within some 
uncertainty range of the validation exercise. Once should keep in mind that this approach 
evaluates whether the evidence is sufficient to consider the model invalid, rather than an 
evaluation of whether the model is valid. It may simply be that the uncertainty in the 
validation exercise is such that one cannot resolve model validity relative to the accuracy 
required. 

10.2.2 Engineering Validation 
 
Another approach is to simply state the range model prediction errors, based on the 
validation exercise. This range may be based on ±uval around E, or ±2 uval around E. If 
one can approximate the distribution for the possible E given samples of these 
differences, then one could also utilize a probability level to define this range.  
 
The advantage of this approach is that the modeler and the customer have an assessment 
of the range of model error, and can decide after the validation exercise whether that 
range is acceptable for the application. In engineering, most models are approximate but 
still useful, especially if one designs sufficient safety factor into the system, so that the 
model errors are small compared to the safety factor. We strongly recommend the 
engineering approach to quantify possible ranges of model error. 
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Figure 10.1 Estimate of model error δmodel 
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11.0 PREDICTIVE CAPABILITY MATURITY MODEL 
 
• Computational models are often used for application conditions different from the validation 

conditions. 
• When the application conditions are different, the usability of the model for these conditions 

requires subject matter expert judgment. 
• The Predictive Capability Maturity Model, along with the PIRT, provides a formalized 

mechanism to elicit and document this judgment. 
 
The previous three chapters overviewed methodology to estimate model error, and 
uncertainty in the model error, given observed differences between experimental 
measurements and model predictions, measurement uncertainty, and estimated model 
prediction uncertainty. These results are critical components in the evidence that the 
model is suitable for the intended application. Other evidence is more subjective and 
requires engineering judgment. The focus of the PIRT is to identify, rank, and perform a gap 
analysis on the physics that is important for an application and is a key element in a model 
credibility evidence package. While the PIRT does address code quality, verification, and 
validation at a high level, additional methodology has been developed to provide a more 
thorough evaluation of computational issues associated with the model. A subject matter 
expert elicitation tool for this additional evidence is the Predictive Capability Maturity 
Model (PCMM) (Oberkampf et. al., 2007).  
 
11.1 What is a PCMM? 
 
The development of a PIRT as discussed in Part I is a precondition of the development of 
the PCMM as the physics, validation hierarchy, and material models addressed in the PCMM 
are those identified in the PIRT. The PCMM is a deeper dive into computational issues 
associated with the modeling of this physics. More specifically, the PCMM is an elicitation 
tool that formalizes the methodology to assess the maturity and completeness of the 
evidence that a computational model is appropriate for the intended application. The 
PCMM is based on six primary elements or practices.  
 
• Representative and Geometric Fidelity 
• Physics and Material Model Fidelity 
• Code Verification 
• Solution Verification 
• Model Validation 
• Uncertainty Quantification and Sensitivity Analysis 
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Each of these elements is assigned a maturity or completeness level, generally from 0 to 3 
based on subjective criteria. The desired level of maturity/completeness depends on the 
application. A computational simulation that is used for scoping studies will generally 
require less maturity than one that is relied on heavily for the qualification of a safety 
critical system. Table 11.2 (Oberkampf et. al., 2007) describes criteria that can be used to 
assign these levels, by element. Table 11.1 defines the acronyms used in the table. It is 
acceptable and often necessary to assign fractional levels. The actual levels assigned to 
each of these six elements are largely subjective and is typically assigned using a team of 
subject matter experts.  
 
Brief descriptions of the six elements are provided below. More complete discussions can 
also be found in Oberkampf et. al. (2007). 
 
Representation and geometric fidelity involves the level of detail used to characterize the 
geometric aspects and features of the system being analyzed. In most cases and disciplines, it is 
either impossible, unnecessary, or both to model every minute aspect of the geometry. 
 
Physics and material model fidelity involves the (1) degree to which models are physics-based, 
(2) degree to which the models are calibrated, (3) degree to which the models are being 
extrapolated from their validation and calibration domains to the conditions of the application of 
interest, and (4) quality and degree of coupling of multi-physics effects that exist in the 
application of interest. 
 
Code verification involves the (1) correctness and fidelity of the numerical algorithms used in the 
code relative to the mathematical model (e.g. the partial differential equations and the 
constitutive models), (2) correctness of the source code, and (3) configuration management, 
control, and testing of software through software quality engineering (SQE) practices. 
 
Solution verification involves the (1) assessment of numerical solution errors, such as grid 
convergence errors, in the computed results and (2) assessment of confidence in the 
computational results as the results may be affected by human errors (i.e. correct input files). 
 
Model Validation involves the (1) thoroughness and rigor of the accuracy assessment of the 
computational results relative to the experimental measurements, (2) completeness and rigor of 
the characterization of the experimental conditions and measurements, and (3) relevancy of the 
experimental conditions, physical hardware, and measurements in the validation experiments and 
the validation hierarchy compared to the application of interest. 
 
Uncertainty quantification and sensitivity analysis involves the (1) thoroughness and soundness 
of the uncertainty quantification effort, including the identification and characterization of all 
plausible sources of uncertainty, (2) accuracy and correctness of propagating uncertainties 
through a computational model and interpreting uncertainties in the system response quantities of 
interest, and (3) thoroughness and precision of a sensitivity analysis to determine the most 
important contributors to uncertainty in system responses. 
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The version of the PCMM developed by Oberkampf et. al. (2007) and presented in Table 11.2 is 
the first generation PCMM. Second, third, and forth generations PCMMs have been developed, 
with each new generation adding more detailed specifications and descriptions of the issues that 
should be addressed with each of the 6 elements. In the case of the fourth generation, additional 
elements have been added, such as customer specifications, quality of experimental data, and 
relevance of the validation hierarchy to the issues identified in the PIRT. See Hills et al. (2013) 
for a summary of the first three generations as well as the process used to develop the fourth 
generation PCMM. The fourth generation PCMM should not be considered superior to any of the 
other generations, and the choice of which PCMM to use should be left to the project team. The 
most important aspect of the application of any of the PCMMs is that it be developed in a team 
environment (i.e. a single subject matter expert should not complete a PCMM) and that the 6 
elements listed above be addressed in sufficient detail for the application at hand.  
 
11.2 Why a PCMM? 
 
A completed PCMM can serve several roles. First, it can be used as a planning tool, where the 
planning is more computationally specific than the higher level planning associated with the 
extended PIRT. For example, one may decide that solution verification procedures are not 
sufficiently complete (or rigorous) for the desired application of the model. While this issue may 
have been identified in the PIRT, the PCMM characterizes these issues in more detail.  
 
The second role is that a completed PCMM can serve as transparent communication and 
documentation tool. The table structure of the PCMM allows quick communication of issues 
associated with the credibility (i.e. maturity) of the computational model based on the 
evidence supporting its credibility. The complete validation evidence package should 
include, at the minimum, a PIRT, the documentation of the validation exercises (i.e., 
experiments, models, data) and results over the validation hierarchy, and the PCMM. 
 
11.3 Recommended Elicitation Process for the PCMM 
 
In contrast to the development of a PIRT, we have found that the approaches used to develop a 
PCMM tends to be more varied (even within an organization or a department) leading to uneven 
assessments. To address this issue, a formalized PCMM expert elicitation process was developed 
as part of the fourth generation PCMM (Hills, et. al., 2013). This process is applicable to any of 
the generational PCMMs and is summarized below: 

11.3.1 Overall Goal of the PCMM  
 
To increase communication within and outside the product delivery team as to the maturity of a 
CompSim to support actionable decisions associated with the customer’s needs.  
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11.3.2 Participants 
 
The team should include at least one customer of the model results (e.g., a designer), one or more 
analysts (i.e. computational specialist who applies the code to applications), one or more 
experimentalists, one or more code developers, and a V&V/PCMM specialist. The number of 
analyst, experimentalist, and developers should be sufficient to provide subject matter expertise 
to address the major features of the computational simulation that are relevant to the customer’s 
application. Roles of the team members include 
  
PCMM team lead: Responsible for selecting team members, for facilitating the overall process 
and the meetings, communicating impact, and delivering final product. 
  
V&V/PCMM SME: Act as a resource on the use of and interpretation of the items in the PCMM. 
  
Other team members: Responsible for providing individual scores and participation in the 
deliberations for the group evaluations scores.  

11.3.3 Process 
 
The following SME elicitation process was designed to help insure that both individual opinions 
and group consensus are characterized by the resulting PCMM document. 
  
The availability of a PIRT for the application is a pre-condition for PCMM evaluations. The 
PIRT addresses the physical phenomena, which are relevant to a PCMM evaluation. 
  
Step 1: The team meets to discuss the PCMM, the elicitation process, and the expectations and 
use of the resulting PCMM product. Copies of the PIRT should be provided to the team at this or 
prior to this meeting. 
  
Step 2: After the meeting, the team members individually develop an initial evaluation of those 
features in the PCMM for which they feel comfortable addressing. 
  
Step 3: The team meets to discuss these individual assessments, to share knowledge that affects 
these assessments, to reach a team consensus, and to document the consensus PCMM maturity 
scores.  
  
Step 4: After the meeting, the individual team members reflect on the deliberations and update 
their own scores if appropriate. Note that individual scores do not have to reflect the team scores. 
These individual scores are used to document diversity of opinion after the deliberation process 
is completed. 
  
Step 5: A final meeting of the team is held to discuss the actual or potential impact of the 
evaluation. The team lead is responsible for providing a summary of the impact. Impacts can be 
as specific as planned or recommended programmatic adjustments, or softer impacts such 
increased understanding of the ability (or lack thereof) of the computational simulation to 
provide the customers with actionable results.  
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11.3.4 Product 
 
The result of this process is a completed PCMM table by individuals and by team consensus. 
 
11.4 PCMM for Program Planning 
 
The PIRT is used for program planning, whereas the PCMM is generally used as a reporting tool. 
However, the PCMM can be used as a computational planning tool if utilized early in the model 
development phases. The advantage of the PCMM relative to the PIRT is the PCMM calls out 
specific issues, such as geometric fidelity, mesh convergence, or uncertainty quantification, that 
might have been overlooked when developing the PIRT, allowing one to address these issues 
before the final evaluation of the PCMM. 
 

 
 

Table 11.1 Acronyms used in Table 11.2 
 

M&S  Modeling and Simulation – equivalent to computational simulation 
IET  Integrated Effects Test – validation experimental tests that contain multiple (integrated) 

physics. 
SET  Separate Effects Tests – validation experimental tests that are design to isolate single 

physics types (such as heat conduction, or stress-strain curves from coupon tests) 
SQE  Software Quality Engineering 
SRQ  System Response Quantity – here we use RQI (Response Quantity of Interest) as the 

validation quantity of interest for component or subsystems may be different from those 
of interest at the system level. 
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12.0 REPORT SUMMARY 
 
 
This document summarizes recommended best practices associated with a model validation 
directed experimental/modeling program. These practices utilize tools that have been developed 
for the modeling of complex engineered systems, such as hydrodynamic modeling for nuclear 
power plants, safety analysis of nuclear weapons, and aerospace design (commercial and 
NASA); as well as guides, and codes and standards that have been developed by various 
international organizations. The recommended practices consider two aspects of a validation 
directed experimental/model program; 1) program planning and 2) model validation 
experiments. 
 
Part 1 of this document focused on the utilization of a Phenomena Identification Ranking Table 
(PIRT) for program planning. The PIRT was originally developed for the nuclear power plant 
industry, and is presently widely used across many industries when computational multi-physics 
modeling of engineered systems is central. The development of a PIRT by a team of subject 
matter experts provides a structured, transparent, and collaborative approach to plan a joint 
computational/experimental program. The team identifies the important phenomena that should 
be captured by the model for an intended application; ranks the phenomena as high, medium, or 
low importance; and assesses current ability to use computational modeling to represent the 
phenomena. The results are then used to perform a gap analysis, identifying the phenomena for 
which the importance is high or medium, and the ability to represent the phenomena by the 
model is thought to be low or medium. This gap analysis prioritizes the phenomena that should 
be addressed by a model development/validation program.  
 
Part 2 focused on the design of validation quality experiments to address the issues and 
experiments identified by the PIRT in Part 1, as well as other issues associated with validation 
and model credibility. The design and execution of validation quality experiments requires tight 
integration between the experimentalist and the modelers to insure that the experimental results 
can be unambiguously modeled.  The safest way to insure this is to model the experiment during 
the design phase. This not only insures that the quantities (initial and boundary conditions, 
material properties, configuration, etc.) required to model the experiment have been identified, 
but also allows the model to be used to optimize the experimental design from a validation 
perspective.  
 
Uncertainty plays a key role in validation, and the quantification of uncertainty should receive 
significant attention. Part 3 address formalized methodology to characterized uncertainty in 
experimental measurements, in model predictions, and in validation assessments of model 
prediction error has been developed by various international organizations and documented in 
guides or codes and standards. These approaches are summarized here, and should be used if 
possible.   
 
Part 4 addresses model assessment both through model validation and through expert elicitation. 
Model validation quantifies agreement between model prediction and experimental observation 
for the conditions of the experiments. However, models are often used to predict system response 
for conditions other than those of the validation exercise. As a result, judgment must be used as 
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to the relevance of the model verification and validation evidence bases for the application. To 
formalize and communicate the completeness of this evidence, the Predictive Capability 
Maturity Model (PCMM) was developed for computational simulation for the nuclear weapons 
industry. The PCMM is currently being modified and adapted by other industries as the PCMM 
serves as a comprehensive expert elicitation tool, which asks questions that are relevant to the 
use of a computational model for high consequence applications. This tool summarizes 
computational model maturity/completeness based on 6 main elements; representational and 
geometric fidelity, physics and material fidelity, code verification, solution verification, model 
validation, and uncertainty quantification and sensitivity analysis.  
 
Overall, the decision to use a computational model to support the design and qualification of a 
complex engineered system requires the integration of technical data (experimental and 
computational), significant engineering and programmatic expert judgment, and compromises 
based on technical and resource limitations. The processes discussed here provide formalism to 
the design and execution of a computation model development/validation program that is used to 
develop the evidence basis that a computational model is suitable for the intended application.  
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